Preferred Language
Articles
/
2xfYSpABVTCNdQwC8YXE
Employing Neural Network and Naive Bayesian Classifier in Mining Data for Car Evaluation

In data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.

Publication Date
Thu May 05 2022
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Scopus Crossref
View Publication
Publication Date
Fri Jan 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Block Ciphers Analysis Based on a Fully Connected Neural Network

With the development of high-speed network technologies, there has been a recent rise in the transfer of significant amounts of sensitive data across the Internet and other open channels. The data will be encrypted using the same key for both Triple Data Encryption Standard (TDES) and Advanced Encryption Standard (AES), with block cipher modes called cipher Block Chaining (CBC) and Electronic CodeBook (ECB). Block ciphers are often used for secure data storage in fixed hard drives, portable devices, and safe network data transport. Therefore, to assess the security of the encryption method, it is necessary to become familiar with and evaluate the algorithms of cryptographic systems. Block cipher users need to be sure that the ciphers the

... Show More
Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Communications In Computer And Information Science
Automatic Identification of Ear Patterns Based on Convolutional Neural Network

Biometrics represent the most practical method for swiftly and reliably verifying and identifying individuals based on their unique biological traits. This study addresses the increasing demand for dependable biometric identification systems by introducing an efficient approach to automatically recognize ear patterns using Convolutional Neural Networks (CNNs). Despite the widespread adoption of facial recognition technologies, the distinct features and consistency inherent in ear patterns provide a compelling alternative for biometric applications. Employing CNNs in our research automates the identification process, enhancing accuracy and adaptability across various ear shapes and orientations. The ear, being visible and easily captured in

... Show More
Scopus Crossref
View Publication
Publication Date
Tue Feb 26 2019
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
Rationalization of Decision –Making and Performance evaluation methods through Employing Strategic Management Accounting

This research dealt with the process of reducing costs through some strategic methods of management accounting targeted cost analysis unassembled and Alkeisen, where he focused this research through his theory on a review of some administrative accounting strategic technologies, while the second practical side through the application of targeted cost analysis unassembled and Alkeisen, acquired Search importance of focusing on the decisions to cut costs, through the use of some administrative accounting strategic methods and this we can unassembled analysis, continuous improvement, and the cost of quality) when applied quality, "in light of this has been reached to a set of conclusions that the most important of the  company's relian

... Show More
Crossref
View Publication
Publication Date
Sat Jun 03 2023
Journal Name
Iraqi Journal Of Science
Face Recognition Using Stationary wavelet transform and Neural Network with Support Vector Machine

Face recognition is a type of biometric software application that can identify a specific
individual in a digital image by analyzing and comparing patterns. It is the process of
identifying an individual using their facial features and expressions.
In this paper we proposed a face recognition system using Stationary Wavelet Transform
(SWT) with Neural Network, the SWT are applied into five levels for feature facial
extraction with probabilistic Neural Network (PNN) , the system produced good results
and then we improved the system by using two manner in Neural Network (PNN) and
Support Vector Machine(SVM) so we find that the system performance is more better
after using SVM where the result shows the performance o

... Show More
View Publication Preview PDF
Publication Date
Thu Jun 30 2011
Journal Name
Al-khwarizmi Engineering Journal
Performance Improvement of Neural Network Based RLS Channel Estimators in MIMO-OFDM Systems

The objective of this study was tointroduce a recursive least squares (RLS) parameter estimatorenhanced by using a neural network (NN) to facilitate the computing of a bit error rate (BER) (error reduction) during channels estimation of a multiple input-multiple output orthogonal frequency division multiplexing (MIMO-OFDM) system over a Rayleigh multipath fading channel.Recursive least square is an efficient approach to neural network training:first, the neural network estimator learns to adapt to the channel variations then it estimates the channel frequency response. Simulation results show that the proposed method has better performance compared to the conventional methods least square (LS) and the original RLS and it is more robust a

... Show More
View Publication Preview PDF
Publication Date
Thu May 05 2016
Journal Name
Global Journal Of Engineering Science And Researches
EVALUATE THE RATE OF CONTAMINATION SOILS BY COPPER USING NEURAL NETWORK TECHNIQUE

The aim of this paper is to design suitable neural network (ANN) as an alternative accurate tool to evaluate concentration of Copper in contaminated soils. First, sixteen (4x4) soil samples were harvested from a phytoremediated contaminated site located in Baghdad city in Iraq. Second, a series of measurements were performed on the soil samples. Third, design an ANN and its performance was evaluated using a test data set and then applied to estimate the concentration of Copper. The performance of the ANN technique was compared with the traditional laboratory inspecting using the training and test data sets. The results of this study show that the ANN technique trained on experimental measurements can be successfully applied to the rapid est

... Show More
View Publication Preview PDF
Publication Date
Wed Mar 01 2023
Journal Name
Results In Engineering
Scopus (13)
Crossref (15)
Scopus Clarivate Crossref
View Publication
Publication Date
Thu Oct 31 2024
Journal Name
Iraqi Geological Journal
Artificial Neural Network Application to Permeability Prediction from Nuclear Magnetic Resonance Log

Reservoir permeability plays a crucial role in characterizing reservoirs and predicting the present and future production of hydrocarbon reservoirs. Data logging is a good tool for assessing the entire oil well section's continuous permeability curve. Nuclear magnetic resonance logging measurements are minimally influenced by lithology and offer significant benefits in interpreting permeability. The Schlumberger-Doll-Research model utilizes nuclear magnetic resonance logging, which accurately estimates permeability values. The approach of this investigation is to apply artificial neural networks and core data to predict permeability in wells without a nuclear magnetic resonance log. The Schlumberger-Doll-Research permeability is use

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Apr 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Bayesian Structural Time Series for Forecasting Oil Prices

There are many methods of forecasting, and these methods take data only, analyze it, make a prediction by analyzing, neglect the prior information side and do not considering the fluctuations that occur overtime. The best way to forecast oil prices that takes the fluctuations that occur overtime and is updated by entering prior information is the Bayesian structural time series (BSTS) method. Oil prices fluctuations have an important role in economic so predictions of future oil prices that are crucial for many countries whose economies depend mainly on oil, such as Iraq. Oil prices directly affect the health of the economy. Thus, it is necessary to forecast future oil price with models adapted for emerging events. In this article, we st

... Show More
Crossref
View Publication Preview PDF