In data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.
Interval methods for verified integration of initial value problems (IVPs) for ODEs have been used for more than 40 years. For many classes of IVPs, these methods have the ability to compute guaranteed error bounds for the flow of an ODE, where traditional methods provide only approximations to a solution. Overestimation, however, is a potential drawback of verified methods. For some problems, the computed error bounds become overly pessimistic, or integration even breaks down. The dependency problem and the wrapping effect are particular sources of overestimations in interval computations. Berz (see [1]) and his co-workers have developed Taylor model methods, which extend interval arithmetic with symbolic computations. The latter is an ef
... Show MoreSurvival analysis is widely applied in data describing for the life time of item until the occurrence of an event of interest such as death or another event of understudy . The purpose of this paper is to use the dynamic approach in the deep learning neural network method, where in this method a dynamic neural network that suits the nature of discrete survival data and time varying effect. This neural network is based on the Levenberg-Marquardt (L-M) algorithm in training, and the method is called Proposed Dynamic Artificial Neural Network (PDANN). Then a comparison was made with another method that depends entirely on the Bayes methodology is called Maximum A Posterior (MAP) method. This method was carried out using numerical algorithms re
... Show MoreThis study was conducted in College of Science \ Computer Science Department \ University of Baghdad to compare between automatic sorting and manual sorting, which is more efficient and accurate, as well as the use of artificial intelligence in automated sorting, which included artificial neural network, image processing, study of external characteristics, defects and impurities and physical characteristics; grading and sorting speed, and fruits weigh. the results shown value of impurities and defects. the highest value of the regression is 0.40 and the error-approximation algorithm has recorded the value 06-1 and weight fruits fruit recorded the highest value and was 138.20 g, Gradin
The data preprocessing step is an important step in web usage mining because of the nature of log data, which are heterogeneous, unstructured, and noisy. Given the scalability and efficiency of algorithms in pattern discovery, a preprocessing step must be applied. In this study, the sequential methodologies utilized in the preprocessing of data from web server logs, with an emphasis on sub-phases, such as session identification, user identification, and data cleansing, are comprehensively evaluated and meticulously examined.
Survival analysis is one of the types of data analysis that describes the time period until the occurrence of an event of interest such as death or other events of importance in determining what will happen to the phenomenon studied. There may be more than one endpoint for the event, in which case it is called Competing risks. The purpose of this research is to apply the dynamic approach in the analysis of discrete survival time in order to estimate the effect of covariates over time, as well as modeling the nonlinear relationship between the covariates and the discrete hazard function through the use of the multinomial logistic model and the multivariate Cox model. For the purpose of conducting the estimation process for both the discrete
... Show MoreSoftware Defined Networking (SDN) with centralized control provides a global view and achieves efficient network resources management. However, using centralized controllers has several limitations related to scalability and performance, especially with the exponential growth of 5G communication. This paper proposes a novel traffic scheduling algorithm to avoid congestion in the control plane. The Packet-In messages received from different 5G devices are classified into two classes: critical and non-critical 5G communication by adopting Dual-Spike Neural Networks (DSNN) classifier and implementing it on a Virtualized Network Function (VNF). Dual spikes identify each class to increase the reliability of the classification
... Show Moreتمهيد
غالبا ما يكون تعامل المنظمات المالية والمصرفية مع الزبائن بشكل أساسي مما يتطلب منها جمع كميات هائلة من البيانات عن هؤلاء الزبائن هذا بالإضافة الى ما يرد اليها يوميا من بيانات يجعلها أمام أكداس كبيرة من البيانات تحتاج الى جهود جبارة تحسن التعامل معها والاستفادة منها بما يخدم المنظمة.
ان التعامل اليدوي مع مثل هذه البيانات دون استخدام تقنيات حديثة يبعد المنظمة عن التط
... Show MoreAerial Robot Arms (ARAs) enable aerial drones to interact and influence objects in various environments. Traditional ARA controllers need the availability of a high-precision model to avoid high control chattering. Furthermore, in practical applications of aerial object manipulation, the payloads that ARAs can handle vary, depending on the nature of the task. The high uncertainties due to modeling errors and an unknown payload are inversely proportional to the stability of ARAs. To address the issue of stability, a new adaptive robust controller, based on the Radial Basis Function (RBF) neural network, is proposed. A three-tier approach is also followed. Firstly, a detailed new model for the ARA is derived using the Lagrange–d’A
... Show MorePalm vein recognition is a one of the most efficient biometric technologies, each individual can be identified through its veins unique characteristics, palm vein acquisition techniques is either contact based or contactless based, as the individual's hand contact or not the peg of the palm imaging device, the needs a contactless palm vein system in modern applications rise tow problems, the pose variations (rotation, scaling and translation transformations) since the imaging device cannot aligned correctly with the surface of the palm, and a delay of matching process especially for large systems, trying to solve these problems. This paper proposed a pose invariant identification system for contactless palm vein which include three main
... Show MoreAn Intelligent Internet of Things network based on an Artificial Intelligent System, can substantially control and reduce the congestion effects in the network. In this paper, an artificial intelligent system is proposed for eliminating the congestion effects in traffic load in an Intelligent Internet of Things network based on a deep learning Convolutional Recurrent Neural Network with a modified Element-wise Attention Gate. The invisible layer of the modified Element-wise Attention Gate structure has self-feedback to increase its long short-term memory. The artificial intelligent system is implemented for next step ahead traffic estimation and clustering the network. In the proposed architecture, each sensing node is adaptive and able to
... Show More