The sensitivity of SnO2 nanoparticles/reduced graphene oxide hybrid to NO2 gas is discussed in the present work using density functional theory (DFT). The SnO2 nanoparticles shapes are taken as pyramids, as proved by experiments. The reduced graphene oxide (rGO) edges have oxygen or oxygen-containing functional groups. However, the upper and lower surfaces of rGO are clean, as expected from the oxide reduction procedure. Results show that SnO2 particles are connected at the edges of rGO, making a p-n heterojunction with a reduced agglomeration of SnO2 particles and high gas sensitivity. The DFT results are in
Abstract
Semiconductor-based gas sensors were prepared, that use n-type tin oxide (SnO2) and tin oxide: zinc oxide composite (SnO2)1-x(ZnO)x at different x ratios using pulse laser deposition at room temperature. The prepared thin films were examined to reach the optimum conditions for gas sensing applications, namely X-ray diffraction, Hall effect measurements, and direct current conductivity. It was found that the optimum crystallinity and maximum electron density, corresponding to the minimum charge carrier mobility, appeared at 10% ZnO ratio. This ratio appeared has the optimum NO2 gas sensitivity for 5% gas concentration at 300 °C working temperat
... Show MoreIn the present work, a density functional theory (DFT) calculation to simulate reduced graphene oxide (rGO) hybrid with zinc oxide (ZnO) nanoparticle's sensitivity to NO2 gas is performed. In comparison with the experiment, DFT calculations give acceptable results to available bond lengths, lattice parameters, X-ray photoelectron spectroscopy (XPS), energy gaps, Gibbs free energy, enthalpy, entropy, etc. to ZnO, rGO, and ZnO/rGO hybrid. ZnO and rGO show n-type and p-type semiconductor behavior, respectively. The formed p-n heterojunction between rGO and ZnO is of the staggering gap type. Results show that rGO increases the sensitivity of ZnO to NO2 gas as they form a hybrid. ZnO/rGO hybrid has a higher number of vacancies that can b
... Show MoreNano-silver oxide thin films with high sensitivity for NH3 gas were deposited on glass substrates by the chemical bath deposition technique. The preparations were made under different values of pH and deposition time at 70áµ’ C, using silver nitrate AgNO3 and triethanolamine. XRD analysis showed that all thin films were
polycrystalline with several peaks of silver oxides such as Ag2O, AgO and Ag3O4, with an average crystallite size that ranged between 31.7 nm and 45.8 nm, depending on the deposition parameters. Atomic force microscope (AFM) technique illustrated that the films were homogenous with different surface roughness and the
grain size ranged between 55.69 nm and 86.23 nm. The UV-Vis spectrophotometer showed that the op
Ferrite with general formula Ni1-x Cox Fe2O4(where x=0.0.1,0.3,0.5,0.7, and 0.9), were prepared by standard ceramic technique. The main cubic spinel structure phase for all samples was confirmed by x-ray diffraction patterns. The lattice parameter results were (8.256-8.299 °A). Generally, x -ray density increased with the addition of Cobalt and showed value between (5.452-5.538gm/cm3). Atomic Force Microscopy (AFM) showed that the average grain size and surface roughness was decreasing with the increasing cobalt concentration. Scanning Electron Microscopy images show that grains had an irregular distribution and irregular shape. The A.C conductivity was found to increase with the frequency and the addition of Cobal
... Show MoreIn this work the structural, optical and sensitive properties of Cerium - Copper oxide thin film prepared on silicon and glass substrate by the spray pyrolysis technique at a temperature of (200, 250, 300 °C). The results of (XRD) showed that all the prepared films were of a polycrystalline installation and monoclinic crystal structure with a preferable directions was (111) of CuO. Optical characteristics observed that the absorption coefficient has values for all the prepared CuO: Ce% (104 cm-1) in the visible spectrum, indicating that all the thin films prepared have a direct energy gap. Been fabrication of gas sensors of (CuO: Ce %) within optimum preparation conditions and study sensitivity properties were examined her exposed to ni
... Show MoreEnvironmental pollutions and resources depletion motivates scientific research to innovate technologies for sustainable productive systems. To develop gas sensing substance with optimized performance a perovskite compound of HoxFe1-x FeO3 (where x= 0, 0.01, 0.03 and 0.05) were prepared by standard solid state reaction technique. The crystal structure was studied by XRD, which confirmed the formation of polycrystalline orthorhombic structure with space group Pbnm type perovskite. The preferred crystal growth of the main peak was (211). The structural parameters were also calculated and it was found that the lattice constants and particle size increased with the Ho doping ratio. The electrical properties were studied using the Hall effect,
... Show More