The covid-19 global pandemic has influenced the day-to-day lives of people across the world. One consequence of this has been significant distortion to the subjective speed at which people feel like time is passing. To date, temporal distortions during covid-19 have mainly been studied in Europe. The current study therefore sought to explore experiences of the passage of time in Iraq. An online questionnaire was used to explore the passage of time during the day, week and the 11 months since the first period of covid-19 restrictions were imposed in Iraq. The questionnaire also measured affective and demographic factors, and task-load. The results showed that distortions to the passage of time were widespread in Iraq. Participants consistently reported a slowing of the passage of time for the day and the week during the pandemic in comparison to normal (i.e. before the pandemic). Participants also reported that it felt like longer than 11-months since the first lockdown began. The passage of time during the day and week were not predicted by any demographic, affective or task-load measures taken in the study. The perceived length of time since the first lockdown was however predicted by stress and change of life due to covid, with greater stress and greater change of life being associated with greater subjective lengthening of the pandemic. The findings indicate that whilst distortions to the passage of time during covid-19 appear to be a global phenomenon, the factors which predict temporal experience during the pandemic differ between countries and cultures.
The primary objective of this study is to manage price market items in the construction of walls for affordable structures with load-bearing hollow masonry units using the ACI 211.1 blend design with a slump range of 25-50 mm that follows the specification limits of IQS 1077. It was difficult to reach a suitable cement weight to minimum content (economic and environmental goal), so many trail mixtures were cast. A portion (10-20%) of the coarse aggregates was replaced with concrete, tile, and clay-brick waste. Finally, two curing methods were used: immersion under water as normal curing, and water spraying as it is closer to the field conditions. The recommendation in IQS 1077 to increase the curing period from 14 to 28 days was tak
... Show MoreCopper selenide (Cu2Se) thin films were prepared by thermal evaporation at RT with thickness 500 nm. The heat-treating for (400 &500) K for the absorber layer has been investigated. This research includes, studying the structural properties of X-ray diffraction (XRD) that show the Cu2Se thin film (Cubic) and has a polycrystalline orientation prevalent (220). Moreover, studying the effect of annealing on their surface morphology properties by using Atomic Force Microscopy AFM. Optical properties were considered using the transmittance and absorbance spectra had been recorded when wavelength range (400 - 1000) nm in order to study the absorption coefficient and energy gap. It was found that these films had allowed direct transitio
... Show MoreApplications of nonlinear, time variant, and variable parameters represent a big challenge in a conventional control systems, the control strategy of the fuzzy systems may be represents a simple, a robust and an intelligent solution for such applications.
This paper presents a design of fuzzy control system that consists of three sub controllers; a fuzzy temperature controller (FC_T), a fuzzy humidity controller (FC_H) and a ventilation control system; to control the complicate environment of the greenhouse (GH) using a proposed multi-choice control system approach. However, to reduce the cost of the crop production in the GH, the first choice is using the ventilation system to control the temperature and humidit
... Show MoreIn all process industries, the process variables like flow, pressure, level, concentration
and temperature are the main parameters that need to be controlled in both set point
and load changes.
A control system of propylene glycol production in a non isothermal (CSTR) was
developed in this work where the dynamic and control system based on basic mass
and energy balance were carried out.
Inlet concentration and temperature are the two disturbances, while the inlet
volumetric flow rate and the coolant temperature are the two manipulations. The
objective is to maintain constant temperature and concentration within the CSTR.
A dynamic model for non isothermal CSTR is described by a first order plus dead
time (FO
The aim of this work is to study the factors that affect the welding joint of dissimilar metals. Austenitic stainless steel-type AISI (316L) with a thickness of (2mm) was welded to carbon steel (1mm) using an MIG spot welding. The filler metal is a welding wire of the type E80S-G (according to AWS) is used with (1.2mm) diameter and CO2 is used as shielding gas with flow rate (7L/min) for all times was used in this work.
The results indicate that the increase of the welding current tends to increase the size of spot weld, and also increases the sheer force. Whereas the sheer force increased inversely with the time of welding. Furthermore, the results indicate that i
... Show MoreEconomic units can benefit from the cleaner production strategy, which aims to reduce the environmental impact of economic activities while improving efficiency and profitability. Accordingly, the aim of the research was to clarify the knowledge foundations of cleaner production costs and to indicate their role in reducing the costs of poor quality (the costs of failure). A set of conclusions has been reached, the most important of which is that cleaner production has achieved a reduction in the costs of external failure, represented by the costs of guarantee, by an amount of 12,339,000 dinars. Contributes to reducing the costs of failure, and based on the conclusions, a set of recommendations were presented, the most important of w
... Show MoreAn experimental study was conducted to determine the performance of a solar electric refrigeration system. The system contained flat photovoltaic solar panel which absorbs the solar energy and convert it to electrical energy, used to run the refrigeration cycle. Two refrigeration cycles with electrical solar panel were used over a period of 12 months, the first one with classical parts known in refrigeration cycle, while the second one introduced heat exchanger which improves the coefficient of performance by saving the consumed energy. The coefficient of performance of these refrigeration cycles with compressor efficiency 85% are 2.102 and 2.57 respectively. The overall efficiency of the two systems are 18.9% and 23.13%.