An optimization study was conducted to determine the optimal operating pressure for the oil and gas separation vessels in the West Qurna 1 oil field. The ASPEN HYSYS software was employed as an effective tool to analyze the optimal pressure for the second and third-stage separators while maintaining a constant operating pressure for the first stage. The analysis involved 10 cases for each separation stage, revealing that the operating pressure of 3.0 Kg/cm2 and 0.7 Kg/cm2 for the second and third stages, respectively, yielded the optimum oil recovery to the flow tank. These pressure set points were selected based on serval factors including API gravity, oil formation volume factor, and gas-oil ratio from the flow tank. To improve the optimization process for separator sizes, a Python code was developed, combining the Newton Raphson Method (NRM), and Lang Cost Method (LCM), with Retention time calculations. In this process, total purchase cost was the objective function. Two design scenarios were examined, corresponding to throughput of 105,000 KBPD and 52,500 KBPD respectively. In the first scenario, the NRM, LCM, and Retention time methods within the Python code were employed, resulting in a three-stage separation train with costs of $1,534,630 for the first stage, $1,438,239 for the second stage and $1,025,978 for the third stage. The Total purchase cost for the separation train was $3,988,847. In the second scenario, utilizing two separators for each stage to process the same throughput resulted in lower costs, totaling $823,851.5 per stage and a total purchase cost of $2,471,553. These costs were calculated using the Lang Cost method, which included the material cost and utilized a Lang factor of 3.1 to determine the total purchase cost after adding shipping, installation, commissioning, and start-up expenses. The first scenario resulted in larger separators and higher costs, while the second scenario showed lower costs, although it required two vessels per stage to process the same throughput. It was observed that the separator efficiencies were influenced by retention time, with increased retention time leading to improved separator efficiency.
This paper deals with an up to date problem for oil and gas industry- separation of the gas -fluid fogs. Here is described the worked out physical model of the gas movement process in the sections of the inertial filtering (IF) gas separators. One can find the mathematical model for research of the fields of velocities and pressures in the inertial curvilinear channel. The main simplifications and assumptions are explained. This mathematical model has been made using mathematical program Maple and it is received the 3-d graphic of the distribution componential speed parts in the channel and also 2-d graphics at the channel sectional view when the flow is flat. The new method for gas - fluid systems separation is suggested.
The unconventional techniques called “the quick look techniques”, have been developed to present well log data calculations, so that they may be scanned easily to identify the zones that warrant a more detailed analysis, these techniques have been generated by service companies at the well site which are among the useful, they provide the elements of information needed for making decisions quickly when time is of essence. The techniques used in this paper are:
- Apparent resistivity Rwa
- Rxo /Rt
The above two methods had been used to evaluate Nasiriyah oil field formations (well-NS-3) to discover the hydrocarbon bearing formations. A compu
... Show MoreEmpirical equation has been presented to predict the optimum hydrodynamic
pressure gradient with optimum mud flow rate (one equation) of five Iraqi oil wells
to obtain the optimum carrying capacity of the drilling fluid ( optimum transport
cuttings from the hole to the surface through the annulus).
This equation is a function of mud flow rate, mud density and penetration
rate without using any charts or graphs.
The correlation coefficient accuracy is more than 0.9999.
Carbonate matrix stimulation technology has progressed tremendously in the last decade through creative laboratory research and novel fluid advancements. Still, existing methods for optimizing the stimulation of wells in vast carbonate reservoirs are inadequate. Consequently, oil and gas wells are stimulated routinely to expand production and maximize recovery. Matrix acidizing is extensively used because of its low cost and ability to restore the original productivity of damaged wells and provide additional production capacity. The Ahdeb oil field lacks studies in matrix acidizing; therefore, this work provided new information on limestone acidizing in the Mishrif reservoir. Moreover, several reports have been issued on the difficulties en
... Show MoreThe emergence of oil fields and subsequent changes in adjacent land use are known to affect settlements and communities. Everywhere the industry emerges, there is little understanding about the impact of oil fields on land use in the surrounding areas. The oil industry in Iraq is one of the most important industries and is almost the main industry in the Iraqi economic sector, and it is very clear that this industry is spread over large areas, and at the same time adjoins with population communities linked to it developmentally.
The rapid development and expansion of oil extraction activities in various regions has led to many challenges related to land-use planning and management. Here, the problem of research arises on th
... Show MoreNanoparticles (NPs) based techniques have shown great promises in all fields of science and industry. Nanofluid-flooding, as a replacement for water-flooding, has been suggested as an applicable application for enhanced oil recovery (EOR). The subsequent presence of these NPs and its potential aggregations in the porous media; however, can dramatically intensify the complexity of subsequent CO2 storage projects in the depleted hydrocarbon reservoir. Typically, CO2 from major emitters is injected into the low-productivity oil reservoir for storage and incremental oil recovery, as the last EOR stage. In this work, An extensive serious of experiments have been conducted using a high-pressure temperature vessel to apply a wide range of CO2-pres
... Show More
The present work aims to study the efficiency of coagulation/ flocculation as 1st stage, natural gravity water filter or microfiltration (MF) as 2nd stage and nanofiltration (NF) technology as final stage for treatment of water of main outfall drain (MOD) for injection in Nasiriyah oil field. Effects of operating parameters such as coagulant dosage, speed and time of slow mixing step and settling time in the 1st stage were studied. Also feed turbidity and total suspended solids (TSS) in the 2
... Show MoreHistory matching is a significant stage in reservoir modeling for evaluating past reservoir performance and predicting future behavior. This paper is primarily focused on the calibration of the dynamic reservoir model for the Meshrif formation, which is the main reservoir in the Garraf oilfield. A full-field reservoir model with 110 producing wells is constructed using a comprehensive dataset that includes geological, pressure-volume-temperature (PVT), and rock property information. The resulting 3D geologic model provides detailed information on water saturation, permeability, porosity, and net thickness to gross thickness for each grid cell, and forms the basis for constructing the dynamic reservoir model. The dynamic reservoir mo
... Show More