An optimization study was conducted to determine the optimal operating pressure for the oil and gas separation vessels in the West Qurna 1 oil field. The ASPEN HYSYS software was employed as an effective tool to analyze the optimal pressure for the second and third-stage separators while maintaining a constant operating pressure for the first stage. The analysis involved 10 cases for each separation stage, revealing that the operating pressure of 3.0 Kg/cm2 and 0.7 Kg/cm2 for the second and third stages, respectively, yielded the optimum oil recovery to the flow tank. These pressure set points were selected based on serval factors including API gravity, oil formation volume factor, and gas-oil ratio from the flow tank. To improve the optimization process for separator sizes, a Python code was developed, combining the Newton Raphson Method (NRM), and Lang Cost Method (LCM), with Retention time calculations. In this process, total purchase cost was the objective function. Two design scenarios were examined, corresponding to throughput of 105,000 KBPD and 52,500 KBPD respectively. In the first scenario, the NRM, LCM, and Retention time methods within the Python code were employed, resulting in a three-stage separation train with costs of $1,534,630 for the first stage, $1,438,239 for the second stage and $1,025,978 for the third stage. The Total purchase cost for the separation train was $3,988,847. In the second scenario, utilizing two separators for each stage to process the same throughput resulted in lower costs, totaling $823,851.5 per stage and a total purchase cost of $2,471,553. These costs were calculated using the Lang Cost method, which included the material cost and utilized a Lang factor of 3.1 to determine the total purchase cost after adding shipping, installation, commissioning, and start-up expenses. The first scenario resulted in larger separators and higher costs, while the second scenario showed lower costs, although it required two vessels per stage to process the same throughput. It was observed that the separator efficiencies were influenced by retention time, with increased retention time leading to improved separator efficiency.
To perform a secure evaluation of Indoor Design data, the research introduces a Cyber-Neutrosophic Model, which utilizes AES-256 encryption, Role-Based Access Control, and real-time anomaly detection. It measures the percentage of unpredictability, insecurity, and variance present within model features. Also, it provides reliable data security. Similar features have been identified between the final results of the study, corresponding to the Cyber-Neutrosophic Model analysis, and the cybersecurity layer helped mitigate attacks. It is worth noting that Anomaly Detection successfully achieved response times of less than 2.5 seconds, demonstrating that the model can maintain its integrity while providing privacy. Using neutrosophic sim
... Show MoreThis paper presents the Extended State Observer (ESO) based repetitive control (RC) for piezoelectric actuator (PEA) based nano-positioning systems. The system stability is proved using Linear Matrix Inequalities (LMIs), which guarantees the asymptotic stability of the system. The ESObased RC used in this paper has the ability to eliminate periodic disturbances, aperiodic disturbances and model uncertainties. Moreover, ESO can be tuned using only two parameters and the model free approach of ESO-based RC, makes it an ideal solution to overcome the challenges of nano-positioning system control. Different types of periodic and aperiodic disturbances are used in simulation to demonstrate the effectiveness of the algorithm. The comparison studi
... Show MoreMobile ad hoc network security is a new area for research that it has been faced many difficulties to implement. These difficulties are due to the absence of central authentication server, the dynamically movement of the nodes (mobility), limited capacity of the wireless medium and the various types of vulnerability attacks. All these factor combine to make mobile ad hoc a great challenge to the researcher. Mobile ad hoc has been used in different applications networks range from military operations and emergency disaster relief to community networking and interaction among meeting attendees or students during a lecture. In these and other ad hoc networking applications, security in the routing protocol is necessary to protect against malic
... Show MoreB3LYP density functional is utilized for probing the effect of decorating Al, Ga, and In on the sensing performance of a boron phosphide nanotube (BPNT) in detecting the 2-chloroethanol (CHE) molecule. We predict that the interaction of pure BPNT with CHE is physisorption, and the sensing response (SR) of BPNT is approximately 6.3. The adsorption energy of CHE is about − 26.3 to − 91.1, − 96.6, and − 100.3 kJ/mol, when the Al, Ga, and In metals are decorated on the BPNT surface, respectively. This indicates that the decorated metals significantly strength the interaction. Also, the corresponding SR meaningfully rises to 19.4, 41.0, and 93.4, indicating that by increasing the atomic number of metals, the sensitivity i
... Show MoreThis paper present the fast and robust approach of English text encryption and decryption based on Pascal matrix. The technique of encryption the Arabic or English text or both and show the result when apply this method on plain text (original message) and how will form the intelligible plain text to be unintelligible plain text in order to secure information from unauthorized access and from steel information, an encryption scheme usually uses a pseudo-random enecryption key generated by an algorithm. All this done by using Pascal matrix. Encryption and decryption are done by using MATLAB as programming language and notepad ++to write the input text.This paper present the fast and robust approach of English text encryption and decryption b
... Show MoreAbstract
This research aims to reform the Iraqi public budget through going into the challenges the budget faces in applying item-line budget in its preparation, implementation and control; which encourage extravagance and waste instead of rationalizing expenditures. This is shown in the data analysis of Federal public budget laws in Iraq for the years from 2005 till 2013; there was a continuous increase in the aggregate public expenditures in the public budget for the years previously mentioned, as the public expenditures growth has reached into the percent 284.71% in 2013. In addition the public budget for these years (2005-2013) is being prepared with planned deficit without confirming that
... Show MoreBackground: Coronavirus disease 2019 (COVID-19) is
one of the updated challenges facing the whole world.
Objective: To identify the characteristics risk factors that
present in humans to be more liable to get an infection
than others.
Methods: A cross-sectional study was conducted for
positively confirmed 35 patients with polymerase chain
reaction in Wasit province at AL-Zahraa Teaching
Hospital from the period of March 13th till April 20th. All
of them full a questionnaire regarded by risk factors and
other comorbidities. Data were analyzed by SPSS version
23 using frequency tables and percentage. For numerical
data, the median, and interquartile range (IQR) were used.
Differences between categoric
Data Driven Requirement Engineering (DDRE) represents a vision for a shift from the static traditional methods of doing requirements engineering to dynamic data-driven user-centered methods. Data available and the increasingly complex requirements of system software whose functions can adapt to changing needs to gain the trust of its users, an approach is needed in a continuous software engineering process. This need drives the emergence of new challenges in the discipline of requirements engineering to meet the required changes. The problem in this study was the method in data discrepancies which resulted in the needs elicitation process being hampered and in the end software development found discrepancies and could not meet the need
... Show MoreIn data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.