Preferred Language
Articles
/
2xdCAI4BVTCNdQwC6ixZ
Proposition of Modified Genetic Algorithm to Estimate Additive Model by using Simulation
...Show More Authors

Often phenomena suffer from disturbances in their data as well as the difficulty of formulation, especially with a lack of clarity in the response, or the large number of essential differences plaguing the experimental units that have been taking this data from them. Thus emerged the need to include an estimation method implicit rating of these experimental units using the method of discrimination or create blocks for each item of these experimental units in the hope of controlling their responses and make it more homogeneous. Because of the development in the field of computers and taking the principle of the integration of sciences it has been found that modern algorithms used in the field of Computer Science genetic algorithm or ant colony algorithm or bees algorithm or a swarm of birds and other originally used algorithm for the purposes of technology pertaining to distinguish between images or signals and others can be illustrated to serve the Census and check successful at it. So the choice fell on the genetic algorithm which often applied in the biology science on the subject of the analysis of DNA and genetic engineering within the modern trends of Medical Science. Proposal genetic algorithm was developed, along with C4.5 algorithm. Having been in this research integrating the work of all these algorithms mechanism Generalized Additive model to estimate some nonparametric function. Simulation was used to demonstrate the classification optimization using misclassification error and prove estimation optimization by the root mean of squares error: RMSE. The simulation has to experiment samples sizes (200, 400, 600) and (1000) replications

Preview PDF
Quick Preview PDF
Publication Date
Sun Feb 03 2019
Journal Name
Journal Of The College Of Education For Women
Estimate the risk of runoff for six basins in the western plateau
...Show More Authors

The research risk of flooding on six water basins located in the eastern part of the western plateau, reached total area of the basin (22,998.9 km 2), has reached all the Basin area (basin to time 7056.1 km2 basin by 3585 km 2, Bath Alheiazi 6404 km 2, Abu beasts 544.1 km2 basin Abu Shannan 144.6 km 2, Bath Valley Faraj 5265.1 km 2), where it was specifically spatial degree of this risk by studying some of the hydrological basin transactions directly related to operations spate runoff study area and the occurrence of flood risks on the surface of ponds.

View Publication Preview PDF
Publication Date
Wed Nov 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Estimate the distribution parameters for the best rates of rainfall in Iraq
...Show More Authors

This paper presents a statistical study for a suitable distribution of rainfall in the provinces of Iraq

 Using two types of distributions for the period (2005-2015). The researcher suggested log normal distribution, Mixed exponential distribution of each rovince were tested with the distributions to determine the optimal distribution of rainfall in Iraq. The distribution will be selected on the basis of minimum standards produced some goodness of fit  tests, which are to determine

Akaike (CAIC), Bayesian Akaike (BIC),  Akaike (AIC). It has been applied to distributions to find the right distribution of the data of rainfall in the provinces of Iraq was used (maximu

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Baghdad Science Journal
COVID-19 Diagnosis System using SimpNet Deep Model
...Show More Authors

After the outbreak of COVID-19, immediately it converted from epidemic to pandemic. Radiologic images of CT and X-ray have been widely used to detect COVID-19 disease through observing infrahilar opacity in the lungs. Deep learning has gained popularity in diagnosing many health diseases including COVID-19 and its rapid spreading necessitates the adoption of deep learning in identifying COVID-19 cases. In this study, a deep learning model, based on some principles has been proposed for automatic detection of COVID-19 from X-ray images. The SimpNet architecture has been adopted in our study and trained with X-ray images. The model was evaluated on both binary (COVID-19 and No-findings) classification and multi-class (COVID-19, No-findings

... Show More
View Publication Preview PDF
Scopus (8)
Scopus Clarivate Crossref
Publication Date
Mon Aug 28 2023
Journal Name
Journal Of Planner And Development
Estimation of urban land price within holly cities by using integrated GIS-regression models: case study Al-Kufa city- Iraq
...Show More Authors

        Urban land price is the primary indicator of land development in urban areas. Land prices in holly cities have rapidly increased due to tourism and religious activities. Public agencies are usually facing challenges in managing land prices in religious areas. Therefore, they require developed models or tools to understand land prices within religious cities. Predicting land prices can efficiently retain future management and develop urban lands within religious cities. This study proposed a new methodology to predict urban land prices within holy cities. The methodology is based on two models, Linear Regression (LR) and Support Vector Regression (SVR), and nine variables (land price, land area,

... Show More
View Publication Preview PDF
Publication Date
Thu Feb 01 2024
Journal Name
Baghdad Science Journal
Improving the efficiency and security of passport control processes at airports by using the R-CNN object detection model
...Show More Authors

The use of real-time machine learning to optimize passport control procedures at airports can greatly improve both the efficiency and security of the processes. To automate and optimize these procedures, AI algorithms such as character recognition, facial recognition, predictive algorithms and automatic data processing can be implemented. The proposed method is to use the R-CNN object detection model to detect passport objects in real-time images collected by passport control cameras. This paper describes the step-by-step process of the proposed approach, which includes pre-processing, training and testing the R-CNN model, integrating it into the passport control system, and evaluating its accuracy and speed for efficient passenger flow

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Tue Mar 01 2016
Journal Name
International Journal Of Engineering Research And Advanced Technology (ijerat)
Speeding Up Back-Propagation Learning (SUBPL) Algorithm: A New Modified Back_Propagation Algorithm
...Show More Authors

The convergence speed is the most important feature of Back-Propagation (BP) algorithm. A lot of improvements were proposed to this algorithm since its presentation, in order to speed up the convergence phase. In this paper, a new modified BP algorithm called Speeding up Back-Propagation Learning (SUBPL) algorithm is proposed and compared to the standard BP. Different data sets were implemented and experimented to verify the improvement in SUBPL.

View Publication
Publication Date
Mon Feb 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Fuzzy logic in the estimate of reliability function for k - components systems
...Show More Authors

Abstract:

One of the important things provided by fuzzy model is to identify the membership functions. In the fuzzy reliability applications with failure functions of the kind who cares that deals with positive variables .There are many types of membership functions studied by many researchers, including triangular membership function, trapezoidal membership function and bell-shaped membership function. In I research we used beta function. Based on this paper study classical method to obtain estimation fuzzy reliability function for both series and parallel systems.

View Publication Preview PDF
Crossref
Publication Date
Mon Dec 18 2017
Journal Name
Al-khwarizmi Engineering Journal
Optimization and Prediction of Process Parameters in SPIF that Affecting on Surface Quality Using Simulated Annealing Algorithm
...Show More Authors

Incremental sheet metal forming is a modern technique of sheet metal forming in which a uniform sheet is locally deformed during the progressive action of a forming tool. The tool movement is governed by a CNC milling machine. The tool locally deforms by this way the sheet with pure deformation stretching. In SPIF process, the research is concentrate on the development of predict models for estimate the product quality. Using simulated annealing algorithm (SAA), Surface quality in SPIF has been modeled. In the development of this predictive model, spindle speed, feed rate and step depth have been considered as model parameters. Maximum peak height (Rz) and Arithmetic mean surface roughness (Ra) are used as response parameter to assess th

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Fri Apr 01 2022
Journal Name
Baghdad Science Journal
Improved Firefly Algorithm with Variable Neighborhood Search for Data Clustering
...Show More Authors

Among the metaheuristic algorithms, population-based algorithms are an explorative search algorithm superior to the local search algorithm in terms of exploring the search space to find globally optimal solutions. However, the primary downside of such algorithms is their low exploitative capability, which prevents the expansion of the search space neighborhood for more optimal solutions. The firefly algorithm (FA) is a population-based algorithm that has been widely used in clustering problems. However, FA is limited in terms of its premature convergence when no neighborhood search strategies are employed to improve the quality of clustering solutions in the neighborhood region and exploring the global regions in the search space. On the

... Show More
View Publication Preview PDF
Scopus (14)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sun Feb 24 2019
Journal Name
Iraqi Journal Of Physics
Newtonian and modified newtonian gravitational simulation of spiral galaxies
...Show More Authors

One of the most powerful tools for any stellar dynamics is the N-body simulation. In an N-body simulation the motion of N particles is followed under their mutual gravitational attraction. In this paper the gravitational N-body simulation is described to investigate Newtonian and non- Newtonian (modified Newtonian dynamics) interaction between the stars of spiral galaxies. It is shown that standard Newtonian interaction requires dark matter to produce the flat rotational curves of the systems under consideration, while modified Newtonian dynamics (MOND) theorem provides a flat rotational curve and gives a good agreement with the observed rotation cu

... Show More
View Publication Preview PDF
Crossref