Because of their Physico‐chemical characteristics and its composition, the development of new specific analytical methodologies to determine some highly polar pesticides are required. The reported methods demand long analysis time, expensive instruments and prior extraction of pesticide for detection. The current work presents a new flow injection analysis method combined with indirect photometric detection for the determination of Fosetyl‐Aluminum (Fosetyl‐Al) in commercial formulations, with rapid and highly accurate determination involving only construction of manifold system combined with photometric detector without need some of the pre‐treatments to the sample before the analysis such as extraction or separation. The proposed method is based on the reaction between the Fosetyl‐Al with the colorimetric reagent (Aluminon dye) in an aqueous medium of sodium nitrite resulting in the formation of a red complex and its absorbance is measured using the photometric detector. The proposed method included optimization of several parameters such as sodium nitrite concentration, flow rate, sample volume, Aluminon dye concentration, mixing coil and light intensity. The linear range of the detector response was in the range of 0.005–1.8 mmol/L for the sample with r (coefficient of determination) 0.9909, R2 (correlation coefficient) 0.9954 at 95 % and 0.0041 mmol/L as a limit of detection. The relative standard deviation was less than 1.5 % for 0.005 mmol/L of the analyte (
In this research, Haar wavelets method has been utilized to approximate a numerical solution for Linear state space systems. The solution technique is used Haar wavelet functions and Haar wavelet operational matrix with the operation to transform the state space system into a system of linear algebraic equations which can be resolved by MATLAB over an interval from 0 to . The exactness of the state variables can be enhanced by increasing the Haar wavelet resolution. The method has been applied for different examples and the simulation results have been illustrated in graphics and compared with the exact solution.
Graphite nanoparticles were successfully synthesized using mixture of H2O2/NH4OH with three steps of oxidation. The process of oxidations were analysis by XRD and optics microscopic images which shows clear change in particle size of graphite after every steps of oxidation. The method depend on treatments the graphite with H2O2 in two steps than complete the last steps by reacting with H2O2/NH4OH with equal quantities. The process did not reduces the several sheets for graphite but dispersion the aggregates of multi-sheets carbon when removed the Van Der Waals forces through the oxidation process.
The transmitting and receiving of data consume the most resources in Wireless Sensor Networks (WSNs). The energy supplied by the battery is the most important resource impacting WSN's lifespan in the sensor node. Therefore, because sensor nodes run from their limited battery, energy-saving is necessary. Data aggregation can be defined as a procedure applied for the elimination of redundant transmissions, and it provides fused information to the base stations, which in turn improves the energy effectiveness and increases the lifespan of energy-constrained WSNs. In this paper, a Perceptually Important Points Based Data Aggregation (PIP-DA) method for Wireless Sensor Networks is suggested to reduce redundant data before sending them to the
... Show MoreDue to the high mobility and dynamic topology of the FANET network, maintaining communication links between UAVs is a challenging task. The topology of these networks is more dynamic than traditional mobile networks, which raises challenges for the routing protocol. The existing routing protocols for these networks partly fail to detect network topology changes. Few methods have recently been proposed to overcome this problem due to the rapid changes of network topology. We try to solve this problem by designing a new dynamic routing method for a group of UAVs using Hybrid SDN technology (SDN and a distributed routing protocol) with a highly dynamic topology. Comparison of the proposed method performance and two other algorithms is simula
... Show MoreBackgrround:: Cholera is gastroenteritis caused by enterotoxin producing Vibrio cholera. Cholera is predominantly a waterborne disease especially in countries with inadequate sanitation. Several rapid methods have been developed and used to detect V. cholerae serotypes directly from stools.
Objjecttiives:: to evaluate a rapid and accurate method for the diagnosis of cholera caused by V. cholerae O1 and O139 serogroups d to find the incidence of sporadic cases of cholera in Baghdad.
Metthods:: Sixty four stool samples were collected from four hospitals in Baghdad. The age of patients ranging from two months to 12 years, 26 were females and 38 males. Immunochromatographic visual test for qualitative detection of O1 and /or O139 serog
The results shows existence of metals such as copper, iron, Cadmium, lead and zinc in most of examined samples , the highest concentration are up to (2.26, 40.82, 282.5, 31.02, 19.26, 4.34) Part per million) ppm) in pasta hot (Zer brand), Indomie with chicken, granule (Zer brand), brand (Zer brand), and rice (mahmood brand) respectively, with presence nickel in spaghetti( Zer brand), granule, Zer brand with concentration reached to 4.34 ppm and 1.06 ppm respectively.
The results of cereals group and its products show that two kinds of fungi, Aspergillus spp. and Penicillin spp. were found in rice (Mahmood brand) with numbers got to 1.5×103 Colony Forming Unit/ gram (c.f.u./g),while Bacillus cereus and Staphylococcus aureus were isola