This research consists of two parts, the first part concern with analyzing the collected data of BOD and COD values in discharge waste water from Al-Dora refinery during 2010 to find the relationship between these two variables The results indicates that there is a high correlation between BOD and COD when using a natural logarithm model (0.86 ln(COD)) with correlation coefficient of 0.98. This relationship is useful in predicting the BOD value using the COD value. The second part includes analyzing collected data from the same site in order to find a relationsip between BOD and other parameters COD, Phenol(phe), Temperature(T), Oil, Sulphat(SO4),pH and Total dissolved solids( TDS) discharged from the refinery. The results indicated that the best mathematical model is BOD= 0.786 (ln(COD))^2- 3.077E83/Exp(10T) + 1.76E+48/Exp(0.1TDS)- 5.6507/Exp(100Phe) With correlation coefficient of 0.873. The presented research demonstrates many conclusions regarding the relation between BOD and other pollutions, it is clear that the relation between BOD and COD is a direct relation, while it’s a reverse relation with other pollutions and it’s also clear that a linear model can be used to represent the relation between BOD and COD for a value of COD approximately less than (50 mg/L).
The method of operational matrices is based on the Bernoulli and Shifted Legendre polynomials which is used to solve the Falkner-Skan equation. The nonlinear differential equation converting to a system of nonlinear equations is solved using Mathematica®12, and the approximate solutions are obtained. The efficiency of these methods was studied by calculating the maximum error remainder ( ), and it was found that their efficiency increases as increases. Moreover, the obtained approximate solutions are compared with the numerical solution obtained by the fourth-order Runge-Kutta method (RK4), which gives a good agreement.
This paper designed a fault tolerance for soft real time distributed system (FTRTDS). This system is designed to be independently on specific mechanisms and facilities of the underlying real time distributed system. It is designed to be distributed on all the computers in the distributed system and controlled by a central unit.
Besides gathering information about a target program spontaneously, it provides information about the target operating system and the target hardware in order to diagnose the fault before occurring, so it can handle the situation before it comes on. And it provides a distributed system with the reactive capability of reconfiguring and reinitializing after the occurrence of a failure.
PC-based controller is an approach to control systems with Real-Time parameters by controlling selected manipulating variable to accomplish the objectives. Shell and tube heat exchanger have been identified as process models that are inherently nonlinear and hard to control due to unavailability of the exact models’ descriptions. PC and analogue input output card will be used as the controller that controls the heat exchanger hot stream to the desired temperature.
The control methodology by using four speed pump as manipulating variable to control the temperature of the hot stream to cool to the desired temperature.
In this work, the dynamics of cross flow shell and tube heat exchanger is modeled from step changes in cold water f
KE Sharquie, AA Noaimi, WK Al-Janabi, Journal of Cosmetics, Dermatological Sciences and Applications, 2013
Undesirable behaviors among students are consider one of the danger problems threating societies and educational and scientific institutions of countries because its one of the way to express aggression , so the instructors consider one of the most important people could be trust their evaluation and logical view , therefore the present research aimed to :
- Recognize undesirable behavior in students of University by the view of their instructors
- Measure the level of undesirable behavior in students of university by the view of their instructors
- Recognize more common undesirable behavior in students of University by the view o
A numerical method is developed for calculation of the wake geometry and aerodynamic forces on two-dimensional airfoil under going an arbitrary unsteady motion in an inviscid incompressible flow (panel method). The method is applied to sudden change in airfoil incidence angle and airfoil oscillations at high reduced frequency. The effect of non-linear wake on the unsteady aerodynamic properties and oscillatory amplitude on wake rollup and aerodynamic forces has been studied. The results of the present method shows good accuracy as compared with flat plate and for unsteady motion with heaving and pitching oscillation the present method also shows good trend with the experimental results taken from published data. The method shows good result
... Show More