The rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient com
... Show MoreThe flexible joint robot (FJR) typically experiences parametric variations, nonlinearities, underactuation, noise propagation, and external disturbances which seriously degrade the FJR tracking. This article proposes an adaptive integral sliding mode controller (AISMC) based on a singular perturbation method and two state observers for the FJR to achieve high performance. First, the underactuated FJR is modeled into two simple second-order fast and slow subsystems by using Olfati transformation and singular perturbation method, which handles underactuation while reducing noise amplification. Then, the AISMC is proposed to effectively accomplish the desired tracking performance, in which the integral sliding surface is designed to reduce cha
... Show MoreHigh vehicular mobility causes frequent changes in the density of vehicles, discontinuity in inter-vehicle communication, and constraints for routing protocols in vehicular ad hoc networks (VANETs). The routing must avoid forwarding packets through segments with low network density and high scale of network disconnections that may result in packet loss, delays, and increased communication overhead in route recovery. Therefore, both traffic and segment status must be considered. This paper presents real-time intersection-based segment aware routing (RTISAR), an intersection-based segment aware algorithm for geographic routing in VANETs. This routing algorithm provides an optimal route for forwarding the data packets toward their destination
... Show MoreThe purpose of this study is to illuminate the role of CBCT in forensic dentistry through variations of mandibular measurements of Bonwill’s triangles in gender determination among the Iraqi population.
In this retrospective study 70 CBCT scans were analyzed to measure the Bonwill’s triangle, 35 for males and 35 for females aged between 20 and 50 years, all data were collected at the oral and maxillofacial radiology department in Ghazi AL-Hariri hospital for 3 months, and the data were obtained using a Kavo CBCT device (3D On De
This study was conducted in the field of the Poultry Research Station of the Department of Animal Production / Department of Agricultural Research / Ministry of Agriculture for the period 4/4/2021 to 16/5/2021, in which 300 one-day-old Ross308 chicks that fed on diets used avocado oil and Chia with percentages 0, 0.2, 0.4, 0.6% respectively, and their mixture consisting of 0.0, 0.1, 0.2, 0.3 each of avocado and Chia oil (50% avocado + 50% Chia oil). The experiment included 4 treatments with 3 replicates for each treatment (10 birds/replicates), in order to study the effect of using avocado and chia oil and their mixture in meat broiler diets on some physiological and microbial characteristics of blood plasma. The results indicate a
... Show MoreThe aim of this research is to use robust technique by trimming, as the analysis of maximum likelihood (ML) often fails in the case of outliers in the studied phenomenon. Where the (MLE) will lose its advantages because of the bad influence caused by the Outliers. In order to address this problem, new statistical methods have been developed so as not to be affected by the outliers. These methods have robustness or resistance. Therefore, maximum trimmed likelihood: (MTL) is a good alternative to achieve more results. Acceptability and analogies, but weights can be used to increase the efficiency of the resulting capacities and to increase the strength of the estimate using the maximum weighted trimmed likelihood (MWTL). In order to perform t
... Show MoreIn this research an Artificial Neural Network (ANN) technique was applied for the prediction of Ryznar Index (RI) of the flowing water from WTPs in Al-Karakh side (left side) in Baghdad city for year 2013. Three models (ANN1, ANN2 and ANN3) have been developed and tested using data from Baghdad Mayoralty (Amanat Baghdad) including drinking water quality for the period 2004 to 2013. The results indicate that it is quite possible to use an artificial neural networks in predicting the stability index (RI) with a good degree of accuracy. Where ANN 2 model could be used to predict RI for the effluents from Al-Karakh, Al-Qadisiya and Al-Karama WTPs as the highest correlation coefficient were obtained 92.4, 82.9 and 79.1% respectively. For
... Show More