This paper introduces the Multistep Modified Reduced Differential Transform Method (MMRDTM). It is applied to approximate the solution for Nonlinear Schrodinger Equations (NLSEs) of power law nonlinearity. The proposed method has some advantages. An analytical approximation can be generated in a fast converging series by applying the proposed approach. On top of that, the number of computed terms is also significantly reduced. Compared to the RDTM, the nonlinear term in this method is replaced by related Adomian polynomials prior to the implementation of a multistep approach. As a consequence, only a smaller number of NLSE computed terms are required in the attained approximation. Moreover, the approximation also converges rapidly over a
... Show MoreThe local asphalt concrete fracture properties represented by the fracture energy, J-integral, and stress intensity factor are calculated from the results of the three point bending beam test made for pre notches beams specimens with deformation rate of 1.27 mm/min. The results revealed that the stress intensity factor has increased by more than 40% when decreasing the testing temperature 10˚C and increasing the notch depth from 5 to 30mm. The change of asphalt type and content have a limited effect of less than 6%.
A flexible pavement structure usually comprises more than one asphalt layer, with varying thicknesses and properties, in order to carry the traffic smoothly and safely. It is easy to characterize each asphalt layer with different tests to give a full description of that layer; however, the performance of the whole; asphalt structure needs to be properly understood. Typically, pavement analysis is carried out using multi-layer linear elastic assumptions, via equations and computer programs such as KENPAVE, BISAR, etc. These types of analysis give the response parameters including stress, strain, and deflection at any point under the wheel load. This paper aims to estimate the equivalent Resilient Modulus (MR) of the asphalt concrete
... Show MoreA flexible pavement structure usually comprises more than one asphalt layer, with varying thicknesses and properties, in order to carry the traffic smoothly and safely. It is easy to characterize each asphalt layer with different tests to give a full description of that layer; however, the performance of the whole; asphalt structure needs to be properly understood. Typically, pavement analysis is carried out using multi-layer linear elastic assumptions, via equations and computer programs such as KENPAVE, BISAR, etc. These types of analysis give the response parameters including stress, strain, and deflection at any point under the wheel load. This paper aims to estimate the equivalent Resilient Modulus (MR) of the asphalt concrete
... Show MoreRoller Compacted Concrete (RCC) is a technology characterized mainly by the use of rollers for compaction; this technology achieves significant time and cost savings in the construction of dams and roads. The primary scope of this research is to study the durability and performance of roller compacted concrete that was constructed in the laboratory using roller compactor manufactured in local market. A total of (60) slab specimen of (38×38×10) cm was constructed using the roller device, cured for 28 days, then 180 sawed cubes and 180 beams are obtained from RCC slab. Then, the specimens are subjected to 60 cycles of freezing and thawing, sulfate attack test and wetting and drying. The degree of effect of the type of coarse aggregate (c
... Show MoreExperimental programs based test results has been used as a means to find out the response of individual elements of structure. In the present study involves investigated behavior of five reinforced concrete deep beams of dimension (length 1200 x height 300 x width150mm) under two points concentrated load with shear span to depth ratio of (1.52), four of these beams with hallow core and
retrofit with carbon fiber reinforced polymer CFRP (with single or double or sides Strips). Two shapes of hallow are investigated (circle and square section) to evaluated the response of beams in case experimental behavior. Test on simply supported beam was performed in the laboratory & loaddeflection, strain of concrete data and crack pattern of
Hydro cracking of heavy oil is used in refinery to produce invaluable products. In this research, a model of hydro cracking reactor has been used to study the behavior of heavy oil in hydro cracking under the conditions recommended by literature in terms lumping of feed and products. The lumping scheme is based on five lumps include: heavy oil, vacuum oil, distillates, naphtha and gases. The first order kinetics was assumed for the conversion in the model and the system is modeled as an isothermal tubular reactor. MATLAB 6.1 was used to solve the model for a five lump scheme for different values of feed velocity, and temperature.
The main objective of this work was to adopt an environmentally friendly technology with enhanced results. The technology of magnetic water (MW) treatment system can be used in concrete mixture production instead of potable water (PW) to improve both workability and strength. Two types of concrete were adopted: normal concreter production with two grades 25 and 35 MPa and the self-compacted concrete (SCC) with 35 MPa grade. The concrete mixes containing MW instead of PW results showed that, for 25 MPa grade, an improvement in a compressive strength of 15.1, 14.8, and 10.2% was achieved for 7, 28, and 90 days, respectively. For 35 MPa grade, an improvement of 13.6, 11.5, and
The main objective of this work was to adopt an environmentally friendly technology with enhanced results. The technology of magnetic water (MW) treatment system can be used in concrete mixture production instead of potable water (PW) to improve both workability and strength. Two types of concrete were adopted: normal concreter production with two grades 25 and 35 MPa and the self-compacted concrete (SCC) with 35 MPa grade. The concrete mixes containing MW instead of PW results showed that, for 25 MPa grade, an improvement in a compressive strength of 15.1, 14.8, and 10.2% was achieved for 7, 28, and 90 days, respectively. For 35 MPa grade, an improvement of 13.6, 11.5, and