Recently, microalgae have become a promising source in the production of biofuel. However, the cost of production is still the main obstacle to develop of this type of source. Although there are many extensive studies on the requirements provided for the cultivation of the microalgae, the study of the process, via the variables that affect the cultivation of microalgae, being still one of the important tasks to improve the production of biofuel. The present article is a serious attempt to investigate of use commercial fertilizer NPK (20:20:20+TE N: P: K) as considered a cheap nutrient medium in growth Chlorella vulgaris by comparison with traditional nutrient (Chu.10 medium). In addition, the current study addresses effect of different sparging periods of filtered air on the microalgae production. The experimental data showed that the use of the NPK fertilizer as cultivation medium in Chlorella vulgaris culture gives more growth rate of microalgae than that produced if the cultivation process was operated with Chu.10 medium. For example the maximum biomass concentration reaches to 0.3249 g L-1 when cultivated in NPK fertilizer, whereas reached to 0.212 g L-1 for cells cultivated in Chu.10 medium. In addition, the results proved that the aeration system in the cultivation can plays an important role in the activity of the microalgae with NPK medium, since it creates a convenient environment with low concentration of oxygen in the medium. The study showed that increasing aeration period for such a type of microalgae increases the growth rate.
In the theoretical part, removal of direct yellow 8 (DY8) from water solution was accomplished using Bentonite Clay as an adsorbent. Under batch adsorption, the adsorption was observed as a function of contact time, adsorbent dosage, pH, and temperature. The equilibrium data were fitted with the Langmuir and Freundlich adsorption models, and the linear regression coefficient R2 was used to determine the best fitting isotherm model. thermodynamic parameters of the ongoing adsorption mechanism, such as Gibb's free energy, enthalpy, and entropy, have also been measured. The batch method was also used for the kinetic calculations, and the day's adsorption assumes first-order rate kinetics. The kinetic studies also show that the intrapar
... Show MoreObjectives: To find out the effect of l-hydroxyphenazine (1-HP) on viability of T-lymphocytes and the reflects of this
effect on experimental hyadatidosis on hydatid cyst protoscoleces infectivity in vivo.
Methodology: Four groups of white male /ه/mice were experimentally infected with four concentrations of (1-HP)
with challenge dose of 2000 protoscoleces /1 ml with negative (9.8.5) and positive (P.H.A) control groups.
Results: It has been found that the higher concentrations (75,100) 1101/111 of the (1-HP) causes significant
decrement in the lymphocytes viability in comparison with negative and positive control groups. (060.01).
Recommendations: The study recommended using concentrations lower than 25 pmole Iml which
This research examines the use of vibratory treatments to reduce residual stresses in small welded parts. In this experimental investigation, a post weld vibration treatment was applied to T- A106 steel pipe fitting specimens to study the effect of the treatment on the residual stress and the hardness of the material. The vibratory stress relief treatment was carried out at different vibration frequency. The results have demonstrated that post-weld vibratory stress relief of small size fittings is possible and residual stress may be relieved, and the treatment may be an alternative method for heat treatment especially when unchange in dimensions and material stability are required.
Incorporating waste byproducts into concrete is an innovative and promising way to minimize the environmental impact of waste material while maintaining and/or improving concrete’s mechanical characteristics and strength. The proper application of sawdust as a pozzolan in the building industry remains a significant challenge. Consequently, this study conducted an experimental evaluation of sawdust as a fill material. In particular, sawdust as a fine aggregate in concrete offers a realistic structural and economical possibility for the construction of lightweight structural systems. Failure under four-point loads was investigated for six concrete-filled steel tube (CFST) specimens. The results indicated that recycled lightweight co
... Show MoreThe introduction of concrete damage plasticity material models has significantly improved the accuracy with which the concrete structural elements can be predicted in terms of their structural response. Research into this method's accuracy in analyzing complex concrete forms has been limited. A damage model combined with a plasticity model, based on continuum damage mechanics, is recommended for effectively predicting and simulating concrete behaviour. The damage parameters, such as compressive and tensile damages, can be defined to simulate concrete behavior in a damaged-plasticity model accurately. This research aims to propose an analytical model for assessing concrete compressive damage based on stiffness deterioration. The prop
... Show MoreA new ligand [N-(4-methoxy benzoyl amino)-thioxo methyl ] leucine (MBL) was prepared from the reaction of (4-methoxy benzoyl isothiocyanate with leucine acid in molar ratio (l:l), it was characterized by elemental analysis (C.H.N.S), FT-IR, UV-Vis, 1H and 13C-NMR. The complexes of the bivalent ions (Mn, Fe, Co, Ni, Cu, Zn, Cd and Hg ) have been prepared and characterized too. The structural was established by elemental analysis (C.H.N.S), FT-IR, UV-Vis spectra, conductivity measurements atomic absorption and magnetic susceptibility and determination of molar ration (M:L). The complexes showed characteristic behavior of tetrahedral geometry around the metal ions except with (Cu) complex showed square planer.
Aluminum doped zinc selenide ZnSe/n-Si thin films of (250∓20 nm) thickness with (0.01, 0.02 and 0.03), are depositing on the two type of substrate (glass and n-Si) to manufacture (ZnSe/n-Si) solar cell through using thermal vacuum evaporation procedure. physical and optoelectronic properties were examined for the samples. X-Ray and AFM techniques are using to study the structure properties. The energy band gap of as-deposited ZnSe thin films for changed dopant ratio were ranging from (2.6-2.68 eV). The results of Hall effect show that pure and doping films were (p-type), and the concentration carriers and the carriers mobility increases with increase Al-dopant ratio. The (C-V) have shown that the heterojunction were of abrupt type. In add
... Show More