Recently, microalgae have become a promising source in the production of biofuel. However, the cost of production is still the main obstacle to develop of this type of source. Although there are many extensive studies on the requirements provided for the cultivation of the microalgae, the study of the process, via the variables that affect the cultivation of microalgae, being still one of the important tasks to improve the production of biofuel. The present article is a serious attempt to investigate of use commercial fertilizer NPK (20:20:20+TE N: P: K) as considered a cheap nutrient medium in growth Chlorella vulgaris by comparison with traditional nutrient (Chu.10 medium). In addition, the current study addresses effect of different sparging periods of filtered air on the microalgae production. The experimental data showed that the use of the NPK fertilizer as cultivation medium in Chlorella vulgaris culture gives more growth rate of microalgae than that produced if the cultivation process was operated with Chu.10 medium. For example the maximum biomass concentration reaches to 0.3249 g L-1 when cultivated in NPK fertilizer, whereas reached to 0.212 g L-1 for cells cultivated in Chu.10 medium. In addition, the results proved that the aeration system in the cultivation can plays an important role in the activity of the microalgae with NPK medium, since it creates a convenient environment with low concentration of oxygen in the medium. The study showed that increasing aeration period for such a type of microalgae increases the growth rate.
The global food supply heavily depends on utilizing fertilizers to meet production goals. The adverse impacts of traditional fertilization practices on the environment have necessitated the exploration of new alternatives in the form of smart fertilizer technologies (SFTs). This review seeks to categorize SFTs, which are slow and controlled-release Fertilizers (SCRFs), nano fertilizers, and biological fertilizers, and describes their operational principles. It examines the environmental implications of conventional fertilizers and outlines the attributes of SFTs that effectively address these concerns. The findings demonstrate a pronounced environmental advantage of SFTs, including enhanced crop yields, minimized nutrient loss, improved nut
... Show Moren this research, some thermophysical properties of ethylene glycol with water (H2O) and two solvent mixtures dimethylformamide/ water (DMF + H2O) were studied. The densities (ρ) and viscosities (η) of ethylene glycol in water and a mixed solvent dimethylformamide (DMF + H2O) were determined at 298.15 K, t and a range of concentrations from 0.1 to1.0 molar. The ρ and η values were subsequently used to calculate the thermodynamics of mixing including the apparent molar volume (ϕv), partial molar volume (ϕvo) at infinite dilution. The solute-solute interaction is presented by Sv results from the equation ∅_v=ϕ_v^o+S_v √m. The values of viscosity (B) coefficients and Falkenhagen coefficient(A) of the Jone-Dole equation and Gibbs free
... Show MoreThis study present, the density of alum chrom in water and in aqueous solution of poly (ethylene glycol) (1500) at different temperature (288.15, 293.15, 298.15) k. Experimental values of density was used to calculate the apparent molar volume (Vθ), limiting apparent molar volume Vθ˚, experimental slope (Sv) and the partial molar volume at infinite dilution of transfer of solute Δνθ˚. These results have been interpreted the molecular interaction in term of ion- solvent, ion– ion interaction. The structure making /breaking capacities have been inferred from the sign of the second derivative of limiting partial molar volume with respect temperature at constant pressure. Alum has been formed to act as structure breaker in water and aq
... Show MoreA thin film of SnSe were deposited by thermal evaporation technique on 400 ±20 nm thick glass substrates of these films were annealed at different temperatures (100,150,200 ⁰C), The effect of annealing on the characteristics of the nano crystalline SnSe thin films was investigated using XRD, UV-VIS absorption spectroscopy, Atomic Force Microscope (AFM), and Hall effect measurements. The results of X-ray displayed that all the thin films have polycrystalline and orthorhombic structure in nature, while UV-VIS study showed that the SnSe has direct band gap of nano crystalline and it is changed from 60.12 to 94.70 nm with increasing annealing temperature. Hall effect measurements showed that all the films have a positive Hall coeffic
... Show MoreThis work involves theoretical and experimental studies for seven compounds to calculate the electrons spectrum and NLO properties. The theoretical study is done by employing the Time Depending Density Functional Theory TD-DFT and B3LYP/high basis set 6-311++G (2d,2p), using Gaussian program 09. Experimental study by UV/VIS spectrophotometer device to prove the theoretical study. Theoretical and experimental results were applicable in spectrum and energy gap values, in addition to convergence theoretically the energy gap results from ΔEHOMO-LUMO and UV/VIS. spectrum. Consider the theoretical method very appropriate to compounds that absorb in vacuum UV.
Refractive indices (nD), viscosities (η) and densities (r) were deliberated for the binary mixtures created by dipropyl amine with 1-octanol, 1-heptanol, 1-hexanol, 1-pentanol and tert-pentyl alcohol at temperature 298.15 K over the perfect installation extent. The function of Redlich-Kister were used to calculate and renovated of the refractive index deviations (∆nD), viscosity deviations (ηE), excess molar Gibbs free energy (∆G*E) and excess molar volumes(Vm E). The standard errors and coefficients were respected by this function. The values of ∆nD, ηE, Vm E and ∆G*E were plotted against mole fraction of dipropyl amine. In all cases the obtained ηE, ∆G*E, Vm E and ∆nD values were negative at 298.15K. Effect of carbon atoms
... Show MoreRefractive indices (nD), viscosities (η) and densities (ρ) were deliberated for the binary mixtures created by dipropyl amine with 1-octanol, 1-heptanol, 1-hexanol, 1-pentanol and tert-pentyl alcohol at temperature 298.15 K over the perfect installation extent. The function of Redlich-Kister were used to calculate and renovated of the refractive index deviations (∆nD), viscosity deviations (ηE), excess molar Gibbs free energy (∆G*E) and excess molar volumes (VmE) The standard errors and coefficients were respected by this function. The values of ∆nD, ηE, VmE and ∆G*E were plotted against mole fraction of dipropyl amine. In all cases the obtained ηE, ∆G*E, VmE and ∆nD values were negative at 298.15K. Effect of carbo
... Show More