In this study, aromatic polyamide reverse osmosis membranes were used to remove zinc ions from electroplating wastewater. Influence of different operating conditions such as time, zinc concentration and pressure on reverse osmosis process efficiency was studied. The experimental results showed, concentration of zinc in permeate increase with increases of time from 0 to 70 min, and flux of water through membrane decline with time. While, the concentrations of zinc in permeate increase with the increase in feed zinc concentration (10–300 mg/l), flux decrease with the increment of feed concentration. The raise of pressure from 1 to 4 bar, the zinc concentration decreases and the flux increase. The highest recovery percentage was found is 54.56% for reverse osmosis element, and the highest rejection of zinc was found is 99.49%. Experimental results showed that the concentrations of zinc ion in permeate was lower than the permissible limits (i.e. ˂ 10 ppm). A mathematical model describing the process was investigated and solved by using MATLAB PROGRAM. Theoretical results were consistent with the experimental results approximately 90%.
Combining different treatment strategies successively or simultaneously has become recommended to achieve high purification standards for the treated discharged water. The current work focused on combining electrocoagulation, ion-exchange, and ultrasonication treatment approaches for the simultaneous removal of copper, nickel, and zinc ions from water. The removal of the three studied ions was significantly enhanced by increasing the power density (4–10 mA/cm2) and NaCl salt concentration (0.5–1.5 g/L) at a natural solution pH. The simultaneous removal of these metal ions at 4 mA/cm2 and 1 g NaCl/L was highly improved by introducing 1 g/L of mordenite zeolite as an ion-exchanger. A remarkable removal of heavy metals was reported
... Show MoreCombining different treatment strategies successively or simultaneously has become recommended to achieve high purification standards for the treated discharged water. The current work focused on combining electrocoagulation, ion-exchange, and ultrasonication treatment approaches for the simultaneous removal of copper, nickel, and zinc ions from water. The removal of the three studied ions was significantly enhanced by increasing the power density (4–10 mA/cm2) and NaCl salt concentration (0.5–1.5 g/L) at a natural solution pH. The simultaneous removal of these metal ions at 4 mA/cm2 and 1 g NaCl/L was highly improved by introducing 1 g/L of mordenite zeolite as an ion-exchanger. A remarkable removal of heavy metals was reported
... Show MoreThe study's objective is to produce Nano Graphene Oxide (GO) before using it for batch adsorption to remove heavy metals (Cadmium Cd+2, Nickel Ni+2, and Vanadium V+5) ions from industrial wastewater. The temperature effect (20-50) °C and initial concentration effect (100-800) mg L-1 on the adsorption process were studied. A simulation aqueous solution of the ions was used to identify the adsorption isotherms, and after the experimental data was collected, the sorption process was studied kinetically and thermodynamically. The Langmuir, Freundlich, and Temkin isotherm models were used to fit the data. The results showed that Cd, Ni, and V ions on the GO adsorbing surface matched the Langmuir mo
... Show MoreInvestigation of the adsorption of Chromium (VI) on Fe3O4 is carried out using batch scale experiments according to statistical design using a software program minitab17 (Box-Behnken design). Experiments were carried out as per Box-Behnken design with four input parameters such as pH (2-8), initial concentration (50–150mg/L), adsorbent dosage (0.05–0.3 g) and time of adsorption (10–60min). The better conditions were showed at pH: 2; contact time: 60 min; chromium concentration: 50 mg/L and magnetite dosage: 0.3 g for maximum Chromium (VI) removal of (98.95%) with an error of 1.08%. The three models (Freundlich, Langmuir, and Temkin) were fitted to experimental data, Langmuir isotherm has bette
... Show MoreHybrid architecture of ZnO nanorods/graphene oxide ZnO-NRs@GO synthesized by electrostatic self-assembly methods. The morphological, optical and luminescence characteristics of ZnO-NRs@GO and ZnO-NRs thin films have been described by FESEM, TEM, HRTEM, and AFM, which refers to graphene oxide have been coated ZnO-NRs with five layers. Here we synthesis ZnO-NRs@GO by simple, cheap and environmentally friendly method, which made it favorable for huge -scale preparation in many applications such as photocatalyst. ZnO-NRs@GO was applied as a photocatalyst Rodamin 6 G (R6G) dye from water using 532 nm diode laser-induced photocatalytic process. Overall degradation of R6G/ ZnO-NRs@GO was achieved after 90 minutes of laser irradiation while it ne
... Show MoreThis paper presents the thermophysical properties of zinc oxide nanofluid that have been measured for experimental investigation. The main contribution of this study is to define the heat transfer characteristics of nanofluids. The measuring of these properties was carried out within a range of temperatures from 25 °C to 45 °C, volume fraction from 1 to 2 %, and the average nanoparticle diameter size is 25 nm, and the base fluid is water. The thermophysical properties, including viscosity and thermal conductivity, were measured by using Brookfield rotational Viscometer and Thermal Properties Analyzer, respectively. The result indicates that the thermophysical properties of zinc oxide nanofluid increasing with nanoparticle volume f
... Show MoreTendon is important structure of the human body, since it can sustain tensile loading. The primary function of this tissue is to stabilize the joints they attached to it during daily activities. As well as, tendon has viscoelastic properties that can determine their response to loading and restrict the potential of injuries. One of the major points that this paper works with is the study of the biomechanical behaviour of tendon in response to tensile loading to describe their biological behaviour. Also, conclude the mathematical expression that may illustrate the tendon behaviour. All of the experiments were made in Physiology laboratories / Medical College/ Al- Nahrain University on ten rats "Rattus Norvegicus" of [108- 360] gm weight f
... Show MoreIn the present work, experimental tests was done to explain the effect of insulation and water level on the yield output. Linear basin, single slope solar still used to do this purpose. The test was done from May to August 2017 in Mosul City-Iraq (Latitude: Longitude: Elevation: 200 m, and South-East face). Experimental results showed that the yield output of the still increased by 20.785% and 19.864% in case of using thermal insulation at 4cm and 5cm respectively, also the yield output decrease by 15.134% as the water level increase from 4 to 5cm, with the presence of insulation and 14.147% without it. It has been conclude that the insulation and water level play important role in the process of passive
... Show MoreThe physical substance at high energy level with specific circumstances; tend to behave harsh and complicated, meanwhile, sustaining equilibrium or non-equilibrium thermodynamic of the system. Measurement of the temperature by ordinary techniques in these cases is not applicable at all. Likewise, there is a need to apply mathematical models in numerous critical applications to measure the temperature accurately at an atomic level of the matter. Those mathematical models follow statistical rules with different distribution approaches of quantities energy of the system. However, these approaches have functional effects at microscopic and macroscopic levels of that system. Therefore, this research study represents an innovative of a wi
... Show More