This study has three parts, the first one is the synthesis of a novel Schiff bases by the condensation of guanine or 9-[{2-hydroxyethoxy}methyl]-9H-guanine with variety aldehydes to yield four different bases as follows: (E)-2-((4-nitrobenzylidene)amino)-1,9-dihydro-6H-purin-6-one (S1), (E)-2-((4-methoxybenzylidene)amino)-1,9-dihydro-6H-purin-6-one (S2), (E)-2-((2-hydroxybenzylidene) amino)-9-((2-hydroxy ethoxy)methyl)-1,9-dihydro-6H-purin-6-one (S3), and (E)-2-(((9-((2-hydroxy ethoxy)methyl)-6-oxo-6,9-dihydro-1H-purin-2-yl)imino)methyl)benzoic acid (S4). Then, spectroscopic analyses such as Elemental Analysis, UV/VIS, Mass spectra, FTIR, 1H,13C-NMR were made to recognize these bases. In the second part, the ability of synthesized bases to undergo a charge transfer reaction was examined in an ethanolic solution at 28℃ with Iodine (I2) and 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) acceptors. The nonbonding interactions were studied using Benesi–Hildebrand method to estimate the stability parameters for all formed charge transfer complexes. The results of CT-energies and Gibbs free energies (ΔG˚) confirmed the stability of these complexes, and all complexes follow the Benesi–Hildebrand equation. The results showed that the DDQ-complexes have an affinity constant ranging from (916.6–24,400) mol−1.L higher than the affinity constant of I2-complexes which ranges from (428.5–7000) mol−1.L. Moreover, the KCT of S2 > S1 and KCT of S4 > S3 were as follows [1222.2 for S1-I2, 4333.3 for S1-DDQ, 2812.5 for S2-I2, 4800 for S2-DDQ] and [3809.5 for S3-I2, 12,200 for S3-DDQ, 7000 for S4-I2, 24,400 for S4-DDQ] due to the specific properties of each compound. The direct energy gap (Egdir) of each complex was also obtained by applying Tauc's method. Iodine complexes with S1, S2, S3, S4, as well as S1-DDQ displayed energy gaps equal to (5.14, 5.11, 4.61, 4.51, and 3.90) eV, respectively, and are likely to act as insulators. In contrast, the DDQ complexes of (S2/S3/S4) bases exhibited Egdir values at (2.85–2.24) electron volts which makes them suitable for semiconductor material usage. Finally, the third part of this work included a theoretical study using DFT/B3LYP/3-21G method to illustrate and prove the experimental findings, which were consistent with the theoretical results.
This study focuses on improving the safety of embankment dams by considering the effects of vibration due to powerhouse operation on the dam body. The study contains two main parts. In the first part, ANSYS-CFX is used to create the three-dimensional (3D) Finite Volume (FV) model of one vertical Francis turbine unit. The 3D model is run by considering various reservoir conditions and the dimensions of units. The Re-Normalization Group (RNG) k-ε turbulence model is employed, and the physical properties of water and the flow characteristics are defined in the turbine model. In the second phases, a 3D finite element (FE) numerical model for a rock-fill dam is created by using ANSYS®, considering the dam connection with its powerhouse
... Show MoreA number of ehemical ion materials were used as an absorber against solar energy. These materials were selected according to their absorption spectra in the wavelength range 300-800nm where the solar spectrum is coventrated. A solar olleetorw^esigd and The ability of each material inside the collector for absorbing the solar radiation was examined by a converter parameter “R”.According to the “R” parameter, the cohaltous and copperic ions material seems to be of higher capability for absorbing solar energy than the other materials.All the results were analyzed by means of a least-squared fitting program.
In this paper the research introduces a new definition of a fuzzy normed space then the related concepts such as fuzzy continuous, convergence of sequence of fuzzy points and Cauchy sequence of fuzzy points are discussed in details.
The purpose of this paper is to give some results theorems , propositions and corollaries concerning new algebraic systems flower , garden and farm with accustomed algebraic systems groupoid , group and ring.
Publication and edition of two tablets from the library in the Ebabbar Temple of Sippar, a manuscript of the ‘Babylonian Poem of the Righteous Sufferer’ (
This paper studies a novel technique based on the use of two effective methods like modified Laplace- variational method (MLVIM) and a new Variational method (MVIM)to solve PDEs with variable coefficients. The current modification for the (MLVIM) is based on coupling of the Variational method (VIM) and Laplace- method (LT). In our proposal there is no need to calculate Lagrange multiplier. We applied Laplace method to the problem .Furthermore, the nonlinear terms for this problem is solved using homotopy method (HPM). Some examples are taken to compare results between two methods and to verify the reliability of our present methods.
In this paper, we have been used the Hermite interpolation method to solve second order regular boundary value problems for singular ordinary differential equations. The suggest method applied after divided the domain into many subdomains then used Hermite interpolation on each subdomain, the solution of the equation is equal to summation of the solution in each subdomain. Finally, we gave many examples to illustrate the suggested method and its efficiency.
The road network serves as a hub for opportunities in production and consumption, resource extraction, and social cohabitation. In turn, this promotes a higher standard of living and the expansion of cities. This research explores the road network's spatial connectedness and its effects on travel and urban form in the Al-Kadhimiya and Al-Adhamiya municipalities. Satellite images and paper maps have been employed to extract information on the existing road network, including their kinds, conditions, density, and lengths. The spatial structure of the road network was then generated using the ArcGIS software environment. The road pattern connectivity was evaluated using graph theory indices. The study demands the abstraction and examin
... Show More