ZnS nanoparticles were prepared by a simple microwave irradiation method under mild condition. The starting materials for the synthesis of ZnS quantum dots were zinc acetate (R & M Chemical) as zinc source, thioacetamide as a sulfur source and ethylene glycol as a solvent. All chemicals were analytical grade products and used without further purification. The quantum dots of ZnS with cubic structure were characterized by X-ray powder diffraction (XRD), the morphology of the film is seen by scanning electron microscopy (SEM). The particle size is determined by field effect scanning electron microscopy (FESEM), UV-Visible absorption spectroscopy and XRD. UV-Visible absorption spectroscopy analysis shows that the absorption peak of the as-prepared ZnS sample (310 nm) displays a blue-shift comparing to the bulk ZnS (345 nm). Photoluminescence spectra of the samples revealed a broad peak centered at 404nm, which were related to excitonic emission. Photocatalytic degradation of Methylene Blue (MB) dye catalyzed by synthesized nanoparticles was studied under solar radiation, photocatalytic degradation increased with increasing time exposure to solar light.
Small molecules drug conjugate mutual prodrug design (SMDC) composed of folate and lethal agent conjugate, rigidly bonded via hydrophilic bridge and self immolative disulfide bond ; represent new interesting approaches for cancer treatment , the component of SMDC intended for targeting folate receptor , along with greater conservation of component until reaching the target tumor tissue . The designing and synthesis of compound VI and VIII derived from 6-Mercaptopurine (6-MP) and Methotrexate ( MTX) conjugate altogether as mutual prodrugs were processed forward successfully by multistep reaction procedures , and by Thin Layer Chromatography (TLC) for
... Show More
Condensation of 4-methoxybenzoyl hydrazine with 4- aminobenzoic acid in the presence of POCl3 gave the oxadiazole derivative [III] .This compound was demethylated with aluminium chloride to give series of 2- (4-hydroxy phenyl)-5-(4-amino phenyl)
1,3,4-oxadiazole [IV]. Series of Schiff s bases [V]n were synthesized by the condensation of compound [IV] with 4-n-alkoxy benzaldehyde in the presence of glacial acetic acid. Condensation of compounds [VI]n. with adipoyl chloride in dry pyridine leads to the formation of a new homologous series [VI]n. The structures of the synthesized compounds were confirmed by physical and spectral means The new compounds [VI]n have been screened for their antibacterial activities . The results
Polyacetal was synthesized from the reaction of Polyethylene glycol with4- dimethylaminobenzaldehyde.Polymer metal complex was synthesized by the reaction with Ag+; polymer blend with polyvinyl alcohol was synthesized solution casting technique. All synthesized compounds were characterized by FT-IR in addition to the antimicrobial activity. The FT-IR spectra indicate the formation of the polyacetal. The DSC resultsindicatethe thermal stability regarding the synthesized polymer blends. The synthesized polyacetal, its metal complex and PA blend against four types of bacteria (gram+ve) Staphylococcus aureas, Bacillus subtilis and (gram –ve)Klebsiella pneumoniae, Escherichia Coli w
... Show MoreThe formation and structural investigation of three new Mannich bases are reported. The synthesis of these compounds was accomplished via a multicomponent one-pot reaction using CaCl2 as a catalyst. The reaction of the benzaldehyde, m-bromoaniline and cyclohexanone or 4-methylcyclohexanone resulted in the formation of L1 and L3, respectively. The synthesis of L2 was achieved by mixing benzaldehyde, o-bromoaniline and cyclohexanone. The isolated compounds were characterised using a range of analytical and spectroscopic techniques. These include; NMR (1H and 13C-NMR), ESMS, FTIR, electronic spectroscopy, microanalyses and melting points. The NMR data for L1 and L2 indicated the presence of one isomer in solutions, on the NMR time scale. How
... Show MoreBidentate Schiff base ligand 3-(3,4-Dihydroxy-phenyl)-2-[(4-dimethylamino-benzylidene)-amino]-2-methyl-propionic acid was prepared and characterized by spectroscopic techniques studies and elemental analysis. The Cd(II), Ni(II), Cu(II), Co(II), Cr(III),and Fe(III) of mixed-ligand complexes were structural explicate through moler conductance , [FT-IR, UV-Vis & AAS], chloride contents, , and magnetic susceptibility measurements. Octahedral geometries have been suggested for all complexes. The Schiff base and its complexes were tested against various bacterial species, two of {gram(G+) and gram(G-)} were shown weak to good activity against all bacteria.
Two new simultaneous spectrophotometric methods for determination of Olanzapine and Ephedrine depend on third (D3) and fourth (D4) derivative of zero spectrum of two drugs were developed. The peak – to- base line, peak to peak and area under peak were found proportional with concentration of the drugs up to (4-24 µg/ml-1) at known experimental wavelengths. The results showed that the method was precise and accurate through RSD% (0.5026-4.0273),( 0.2399 6.9888) and R.E %(-2.3889-0.8333) ,) -2.9444-0.2273) while the LOD (0.0057- 0.8510 μg.ml-1), ( 0.0953-0.9844 μg.ml-1) and LOQ (0.0173- 2.5788μg.ml-1),( 0.5774-2.9829 μg.ml-1) were found for the two drugs respectively. The methods were applied i
... Show MoreA new four series of 2,2′-([1,1′- phenyl or biphenyl]-4,4′-diylbis(azanediyl)) bis(N′-((E)-1-(4-alkoxyphenyl) ethylidene) acetohydrazide) [V-XI]a,b and 1,1′-(2,2′-([1,1′- phenyl or biphenyl]-4,4′-diyl bis(azanediyl)) bis- (acetyl)) bis(3-(4-ethoxyphenyl)-1H-pyrazole-4-carbalde hyde) [XII-XVIII]a,b have been synthesized by varying terminal lateral alkoxy chain length (n = 1–3, 5–8), central linkage group (phenyl or biphenyl) and induced pyrazole heterocyclic ring in the main chain. The last two series were synthesized by the cyclization of substituted acetophenone hydrazones with Vilsmeier–Haack reagent (DMF/POCl3) to produce 4-formylpyrazole derivatives. The chemical structures of the synthesized compounds were examine
... Show More