The silver nanoparticles synthesized have to be handled by humans and must be available at cheaper rates for their effective utilization; thus, there is a need for an environmentally and economically feasible way to synthesize these nanoparticles. Therefore, this study aimed to synthesis of silver nanoparticles using phenolic compounds extracted from Rosmarinus officinalis. The maceration method and Soxhlet apparatus were used to prepare aqueous and methanolic Rosmarinus officinalis leaves extracts respectively, Furthermore, Rosmarinus officinalis silver nanoparticles (RAgNPs) were prepared from the aqueous and methanolic leaves extract of this plant and diagnosed using the ultraviolet (UV) spectroscopy, scanning electron microscopy (SEM), atomic fluorescence microscopy (AFM), X-ray scattering (XRD), energy dispersive X-ray (EDX) and infrared spectroscopy (FTIR). The diagnostic results showed that the nanoparticles are spherical in shape, single or combined, and crystalline for both aqueous and methanolic silver nanoparticles extract.
The reserve estimation process is continuous during the life of the field due to risk and inaccuracy that are considered an endemic problem thereby must be studied. Furthermore, the truth and properly defined hydrocarbon content can be identified just only at the field depletion. As a result, reserve estimation challenge is a function of time and available data. Reserve estimation can be divided into five types: analogy, volumetric, decline curve analysis, material balance and reservoir simulation, each of them differs from another to the kind of data required. The choice of the suitable and appropriate method relies on reservoir maturity, heterogeneity in the reservoir and data acquisition required. In this research, three types of rese
... Show MoreLead remediation was achieved using simple cost, effective and eco-friendly way from industrial wastewater. Phragmitesaustralis (P.a) (Iraqi plant), was used as anovel biomaterial to remove lead ions from synthesized waste water. Different parameters which affected on adsorption processes were investigated like adsorbent dose, pH, contact time, and adsorbent particle size, to reach the optimized conditions (maximum adsorption). The adsorption of Pb (?) on (P.a) involved fast and slow process as a mechanism steps according to obey two theoretical adsorption isotherms; Langmuir and Freundlich. The thermos dynamic adsorption parameters were evaluated also. The (?H) obtained positive value that meanes adsorption of lead ions was an endothermic
... Show More
Abstract
This research deals with Building A probabilistic Linear programming model representing, the operation of production in the Middle Refinery Company (Dura, Semawa, Najaif) Considering the demand of each product (Gasoline, Kerosene,Gas Oil, Fuel Oil ).are random variables ,follows certain probability distribution, which are testing by using Statistical programme (Easy fit), thes distribution are found to be Cauchy distribution ,Erlang distribution ,Pareto distribution ,Normal distribution ,and General Extreme value distribution . &
... Show MoreAbstract: Recently, there is increasing interest in using mode-division multipelexing (MDM) technique to enhace data rate transmission over multimode fibers. In this technique, each fiber mode is treated as a separate optical carrier to transfer its own data. This paper presents a broadband, compact, and low loss three-mode (de)multiplexer designed for C+L band using subwavelength grating (SWG) technology and built-in silicon-on-insulator SOI platform. SWG offers refractive index engineering for wider operating bandwidth and compact devices compared to conventional ones. The designed (de)multiplex deals with three modes (TE0, TE1, and TE2) and has a loss > -1 dB and crosstalk < −15 dB, and its operation c
... Show MoreThe method of predicting the electricity load of a home using deep learning techniques is called intelligent home load prediction based on deep convolutional neural networks. This method uses convolutional neural networks to analyze data from various sources such as weather, time of day, and other factors to accurately predict the electricity load of a home. The purpose of this method is to help optimize energy usage and reduce energy costs. The article proposes a deep learning-based approach for nonpermanent residential electrical ener-gy load forecasting that employs temporal convolutional networks (TCN) to model historic load collection with timeseries traits and to study notably dynamic patterns of variants amongst attribute par
... Show MoreIn this research, the one of the most important model and widely used in many and applications is linear mixed model, which widely used to analysis the longitudinal data that characterized by the repeated measures form .where estimating linear mixed model by using two methods (parametric and nonparametric) and used to estimate the conditional mean and marginal mean in linear mixed model ,A comparison between number of models is made to get the best model that will represent the mean wind speed in Iraq.The application is concerned with 8 meteorological stations in Iraq that we selected randomly and then we take a monthly data about wind speed over ten years Then average it over each month in corresponding year, so we g
... Show MoreIn today's digital era, the importance of securing information has reached critical levels. Steganography is one of the methods used for this purpose by hiding sensitive data within other files. This study introduces an approach utilizing a chaotic dynamic system as a random key generator, governing both the selection of hiding locations within an image and the amount of data concealed in each location. The security of the steganography approach is considerably improved by using this random procedure. A 3D dynamic system with nine parameters influencing its behavior was carefully chosen. For each parameter, suitable interval values were determined to guarantee the system's chaotic behavior. Analysis of chaotic performance is given using the
... Show More