The silver nanoparticles synthesized have to be handled by humans and must be available at cheaper rates for their effective utilization; thus, there is a need for an environmentally and economically feasible way to synthesize these nanoparticles. Therefore, this study aimed to synthesis of silver nanoparticles using phenolic compounds extracted from Rosmarinus officinalis. The maceration method and Soxhlet apparatus were used to prepare aqueous and methanolic Rosmarinus officinalis leaves extracts respectively, Furthermore, Rosmarinus officinalis silver nanoparticles (RAgNPs) were prepared from the aqueous and methanolic leaves extract of this plant and diagnosed using the ultraviolet (UV) spectroscopy, scanning electron microscopy (SEM), atomic fluorescence microscopy (AFM), X-ray scattering (XRD), energy dispersive X-ray (EDX) and infrared spectroscopy (FTIR). The diagnostic results showed that the nanoparticles are spherical in shape, single or combined, and crystalline for both aqueous and methanolic silver nanoparticles extract.
In this work ,the modified williamos-Hall method was used to analysis the x-ray diffraction lines for powder of magnesium oxide nanoparticles (Mgo) .and for diffraction lines (111),(200),(220),(311) and (222).where by used special programs such as origin pro Lab and Get Data Graph ,to calculate the Full width at half maximum (FWHM) and integral breadth (B) to calculate the area under the curve for each of the lines of diffraction .After that , by using modified Williamson –Hall equations to determin the values of crystallite size (D),lattice strain (ε),stress( σ ) and energy (U) , where was the results are , D=17.639 nm ,ε =0.002205 , σ=0.517 and U=0.000678 respectively. And then using the scherrer method can by calculated the crystal
... Show MoreBackground: Angiogenesis is defined as the formation of new blood vessels. However, angiogenesis in cancer will lead to tumour growth and metastasis. Therefore, anti-angiogenesis is one of the ways to slow down growth and spreading of tumour. Moringa oleifera is also known as a “Miracle tree” which has high nutritive value and various therapeutics effect in different parts of the plant. This study aims to determine the anti-angiogenic property of Moringa oleifera leaves extract by using chick chorioallantoic membrane (CAM) assay. Materials and Methods: The extracts were prepared by decoction method using methanol and water. The qualitative phytochemical screening was carried out for
... Show MoreZnS:Ce3+ nanoparticles were prepared by a simple microwave irradiation method under mild condition. The starting materials for the synthesis of ZnS:Ce3+ quantum dots were zinc acetate (R & M Chemical) as zinc source, thioacetamide as a sulfur source, cerium chloride as cerium source and ethylene glycol as a solvent. All chemicals were analytical grade products and used without further purification. The quantum dots of ZnS:Ce3+ with cubic structure were characterized by X-ray powder diffraction (XRD), the morphology of the film is seen by scanning electron microscopy (SEM) also by field effect scanning electron microscopy (FESEM) and XRD. Upon exposure to 460 nm light at zero bias voltage, ZnS:Ce3+/p-Si showed a high sensitivity of 4000% an
... Show MoreSolvents are important components in the pharmaceutical and chemical industries, and they are increasingly being used in catalytic reactions. Solvents have a significant influence on the kinetics and thermodynamics of reactions, and they can significantly change product selectivity. Solvents can influence product selectivity, conversion rates, and reaction rates. However, solvents have received a lot of attention in the field of green chemistry. This is due to the large amount of solvent that is frequently used in a process or formulation, particularly during the purification steps. However, neither the solvent nor the active ingredient in a formulation is directly responsible for the reaction product's composition. Because these ch
... Show MoreCarbon nanospheres (CNSs) were successfully prepared and synthesized by Catalytic Chemical Vapor Deposition (CCVD) by using camphor as carbon source only, over iron Cobalt (Fe-Co) saturated zeolite at temperature between (700 oC and 900 °C), with different concentrations of camphor, and reaction time. The synthesized CNSs were characterized using Scanning Electron Microscopy (SEM), X-ray diffraction spectroscopy (XRD), and Fourier Transform Infrared (FTIR). The carbon spheres in different sizes between 100 nm and 1000 nm were investigated. This work has done by two parts, first preparation of the metallic catalyst and second part formation CNSs by heat treatment.
Nanoparticle has pulled in expanding consideration with the developing enthusiasm for nanotechnology which hold potential as essential segments for development applications. In the present work, a copper nanoparticle is manufactured as a suspension in distilled water by beating a bulk copper target with laser source (532 nm wavelength, 10 ns pulse duration and 10 Hz repletion rate) via method. UV- visible absorption spectra and AFM analysis has been done to observe the effect of repetition rate for the pulsation of laser. Copper nanoparticles (Cu-NPs) were successfully synthesized with green color. The Cu- NPs have very high purity because the preparation was managed in aqueous media to eliminate ambient contaminations. Absorption
... Show MoreCopper oxide (CuO) nanoparticles were synthesized through the thermal decomposition of a copper(II) Schiff-base complex. The complex was formed by reacting cupric acetate with a Schiff base in a 2:1 metal-to-ligand ratio. The Schiff base itself was synthesized via the condensation of benzidine and 2-hydroxybenzaldehyde in the presence of glacial acetic acid. This newly synthesized symmetric Schiff base served as the ligand for the Cu(II) metal ion complex. The ligand and its complex were characterized using several spectroscopic methods, including FTIR, UV-vis, 1H-NMR, 13C-NMR, CHNS, and AAS, along with TGA, molar conductivity and magnetic susceptibility measurements. The CuO nanoparticles were produced by thermally decomposing the
... Show More