Deep Learning Techniques For Skull Stripping of Brain MR Images
Objective: To identify barriers to healthcare access, to assess the health literacy levels of the foreign-born Arabic speaking population in Iowa, USA and to measure their prevalence of seeking preventive healthcare services. Methods: A cross-sectional study of native Arabic speaking adults involved a focus group and an anonymous paper-based survey. The focus group and the Andersen Model were used to develop the survey questionnaire. The survey participants were customers at Arabic grocery stores, worshippers at the city mosque and patients at free University Clinic. Chi-square test was used to measure the relationship between the characteristics of survey participants and preventive healthcare services. Thematic analysis was
... Show MoreTo damp the low-frequency oscillations which occurred due to the disturbances in the electrical power system, the generators are equipped with Power System Stabilizer (PSS) that provide supplementary feedback stabilizing signals. The low-frequency oscillations in power system are classified as local mode oscillations, intra-area mode oscillation, and interarea mode oscillations. Double input multiband Power system stabilizers (PSSs) were used to damp out low-frequency oscillations in power system. Among dual-input PSSs, PSS4B offers superior transient performance. Power system simulator for engineering (PSS/E) software was adopted to test and evaluate the dynamic performance of PSS4B model on Iraqi national grid. The results showed
... Show MoreThe issue of image captioning, which comprises automatic text generation to understand an image’s visual information, has become feasible with the developments in object recognition and image classification. Deep learning has received much interest from the scientific community and can be very useful in real-world applications. The proposed image captioning approach involves the use of Convolution Neural Network (CNN) pre-trained models combined with Long Short Term Memory (LSTM) to generate image captions. The process includes two stages. The first stage entails training the CNN-LSTM models using baseline hyper-parameters and the second stage encompasses training CNN-LSTM models by optimizing and adjusting the hyper-parameters of
... Show MoreAn optoelectronic flow-through detector for active ingredients determination in pharmaceutical formulations is explained. Two consecutive compact photodetector’s devices operating according to light-emitting diodes-solar cells concept where the LEDs acting as a light source and solar cells for measuring the attenuated light of the incident light at 180˚ have been developed. The turbidimetric detector, fabricated of ten light-emitting diodes and five solar cells only, integrated with a glass flow cell has been easily adapted in flow injection analysis manifold system. For active ingredients determination, the developed detector was successfully utilized for the development and validation of an analytical method for warfarin determination
... Show More<p>Recently, reconfigurable intelligent surfaces have an increasing role to enhance the coverage and quality of mobile networks especially when the received signal level is very weak because of obstacles and random fluctuation. This motivates the researchers to add more contributions to the fields of reconfigurable intelligent surfaces (RIS) in wireless communications. A substantial issue in reconfigurable intelligent surfaces is the huge overhead for channel state information estimation which limits the system’s performance, oppressively. In this work, a newly proposed method is to estimate the angle of arrival and path loss at the RIS side and then send short information to the base station rather than huge overhe
... Show More