Abstract The present work aims to study the performance of reinforced compacted clay soil by sand columns stabilized with sodium silicate to obtain more solid columns than the surrounding soil. The experimental work was carried out by using a lab model to evaluate the performance of both the floating and end bearing sand columns. The results showed that the improvement ratio for the soil reinforced with sand columns stabilized with sodium silicate reached 390% for the type of floating columns and 438% for end bearing columns.
This study was included the isolation of four strains from two species of lactic acid bacteria which as Lactococcus lactis subsp. diacetylactis; Lactococcus lactis subsp. lactis; Leuconostoc mesenteroides subsp. mesenteroides and Leuconostoc mesenteroides subsp. cremoris, were isolated from locally fermented diary products. The isolated were identified by using morphological, cultural and biochemical tests. Their abilities to producing flavor compounds as each Diacetyl and Acetoin after cultured on MRS broth media and incubation at 30 °c for 24 hours. The results indicated that’s all strains were produced the acetoin significantly (P<0.05) more than diacetyl compound. The production of Lactococcus lactis subsp. diacetylactis from Diacety
... Show MoreThe behaviour of certain dynamical nonlinear systems are described in term as chaos, i.e., systems' variables change with the time, displaying very sensitivity to initial conditions of chaotic dynamics. In this paper, we study archetype systems of ordinary differential equations in two-dimensional phase spaces of the Rössler model. A system displays continuous time chaos and is explained by three coupled nonlinear differential equations. We study its characteristics and determine the control parameters that lead to different behavior of the system output, periodic, quasi-periodic and chaos. The time series, attractor, Fast Fourier Transformation and bifurcation diagram for different values have been described.
The size and the concentration of the gold nanoparticles (GNPs)
synthesized in double distilled deionized water (DDDW) have been
found to be affected by the laser energy and the number of pulses.
The absorption spectra of the nanoparticles DDDW, and the
surface plasmon resonance (SPR) peaks were measured, and found to
be located between (509 and 524)nm using the UV- Vis
spectrophotometer. SPR calculations, images of transmission
electron microscope, and dynamic light scattering (DLS) method
were used to determine the size of GNPs, which found to be ranged
between (3.5 and 27) nm. The concentrations of GNPs in colloidal
solutions found to be ranged between (37 and 142) ppm, and
measured by atomic absorptio
Background: Dolutegravir sodium (DTG), used to treat HIV, faces challenges in delivering effective therapeutic concentrations to the brain due to the blood-brain barrier (BBB). Nanostructured lipid carriers (NLCs) combined with in situ gels present a promising strategy for enhancing brain drug delivery via the intranasal route. Objective: To compare brain pharmacokinetics of DTGs delivered via NLC-loaded in situ gel intranasal administration with the conventional intravenous (IV) drug solution. Methods: 80 Wistar rats, which were divided into three groups: two groups consisting of 39 animals each and a control group with 2 animals. Rats were administered with a dose of 1.0 mg/kg of DTGs IV, and DTGs NLC-loaded in situ gel were admin
... Show MoreIn the present work, the nuclear shell model with Hartree–Fock (HF) calculations have been used to investigate the nuclear structure of 24Mg nucleus. Particularly, elastic and inelastic electron scattering form factors and transition probabilities have been calculated for low-lying positive and negative states. The sd and sdpf shell model spaces have been used to calculate the one-body density matrix elements (OBDM) for positive and negative parity states respectively. Skyrme-Hartree-Fock (SHF) with different parameterizations has been tested with shell model calculation as a single particle potential for reproducing the experimental data along with a harmonic oscillator (HO) and Woods-Saxo
... Show MoreStructural and optical properties of CdO and CdO0.99Cu0.01 thin
films were prepared in this work. Cadmium Oxide (CdO) and
CdO0.99Cu0.01semiconducting films are deposited on glass substrates
by using pulsed laser deposition method (PLD) using SHG with Qswitched
Nd:YAG pulsed laser operation at 1064nm in 6x10-2 mbar
vacuum condition and frequency 6 Hz. CdO and CdO0.99Cu0.01 thin
films annealed at 550 C̊ for 12 min. The crystalline structure was
studied by X-ray diffraction (XRD) method and atomic force
microscope (AFM). It shows that the films are polycrystalline.
Optical properties of thin films were analyzed. The direct band gap
energy of CdO and CdO0.99Cu0.01 thin films were determined from
(αhυ)1/2 v
The experiment was conducted in the fields belonging to the Department of Horticulture, College of Agricultural Engineering Sciences, University of Baghdad, at Al-Jadriya Complex / Station A, for the autumn season of 2022-2023. The aim was to study the effect of water fish irrigation and water lens plant extract foliar application on the growth and productivity of beetroot. The experiment included two factors: the first factor was water fish irrigation with five concentrations (A) Control treatment (irrigation with river water and recommended fertilization), (B) Water fish irrigation at 25% concentration, (C) water Fish irrigation at 50% concentration, (D) Water Fish irrigation at 75%
Gypseous soil is prevalent in arid and semi-arid areas, is from collapsible soil, which contains the mineral gypsum, and has variable properties, including moisture-induced volume changes and solubility. Construction on these soils necessitates meticulous assessment and unique designs due to the possibility of foundation damage from soil collapse. The stability and durability of structures situated on gypseous soils necessitate close collaboration with specialists and careful, methodical preparation. It had not been done to find the pattern of failure in the micromechanical behavior of gypseous sandy soil through particle image velocity (PIV) analysis. This adopted recently in geotech