Preferred Language
Articles
/
2hbIuosBVTCNdQwCVdjZ
Predicting the future growth depending on GIS and IDRISI program, city of Najaf-Iraq
...Show More Authors
Abstract<p>This study aims to employ modern spatial simulation models to predict the future growth of Al-Najaf city for the year 2036 by studying the change in land use for the time period (1986-2016) because of its importance in shaping future policy for the planning process and decision-making process and ensuring a sustainable urban future, using Geographical information software programs and remote sensing (GIS, IDRISI Selva) as they are appropriate tools for exploring spatial temporal changes from the local level to the global scale. The application of the Markov chain model, which is a popular model that calculates the probability of future change based on the past, and the Cellular Automata (CA) model determines the spatial location of the change. CA-Markov is known as a more effective way to model simulation of temporal and spatial change. Space images have been relied upon by applying models for the information they provide on the reality of the state of land uses, which can help in understanding the engines and dynamics of land transformation and forecasting future economic and environmental impacts.</p>
Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Nov 19 2020
Journal Name
Indonesian Journal Of Chemistry
Determination of Eugenol in Personal-Care Products by Dispersive Liquid-Liquid Microextraction Followed by Spectrophotometry Using &lt;i&gt;p&lt;/i&gt;-Amino-&lt;i&gt;N,N&lt;/i&gt;-dimethylaniline as a Derivatizing Agent
...Show More Authors

Two simple methods for the determination of eugenol were developed. The first depends on the oxidative coupling of eugenol with p-amino-N,N-dimethylaniline (PADA) in the presence of K3[Fe(CN)6]. A linear regression calibration plot for eugenol was constructed at 600 nm, within a concentration range of 0.25-2.50 μg.mL–1 and a correlation coefficient (r) value of 0.9988. The limits of detection (LOD) and quantitation (LOQ) were 0.086 and 0.284 μg.mL–1, respectively. The second method is based on the dispersive liquid-liquid microextraction of the derivatized oxidative coupling product of eugenol with PADA. Under the optimized extraction procedure, the extracted colored product was determined spectrophotometrically at 618 nm. A l

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (6)
Scopus Clarivate Crossref