Finding communities of connected individuals in complex networks is challenging, yet crucial for understanding different real-world societies and their interactions. Recently attention has turned to discover the dynamics of such communities. However, detecting accurate community structures that evolve over time adds additional challenges. Almost all the state-of-the-art algorithms are designed based on seemingly the same principle while treating the problem as a coupled optimization model to simultaneously identify community structures and their evolution over time. Unlike all these studies, the current work aims to individually consider this three measures, i.e. intra-community score, inter-community score, and evolution of community over time. Here, we adopt a new perspective towards detecting the evolution of community structures. The proposed method realizes the decomposition of the problem into three essential components; searching in: intra-community connections, inter-community connections, and community evolution. A multi-objective optimization problem is defined to account for the different intra and inter community structures. Further, we formulate the community evolution problem as a Hidden Markov Model in an attempt to dexterously track the most likely sequence of communities. Then the new model, called Hidden Markov Model-based Multi-Objective evolutionary algorithm for Dynamic Community Detection (HMM-MODCD), uses a multi-objective evolutionary algorithm and Viterbi algorithm for formulating objective functions and providing temporal smoothness over time for clustering dynamic networks. The performance of the proposed algorithm is evaluated on synthetic and real-world dynamic networks and compared against several state-of-the-art algorithms. The results clearly demonstrate the effectiveness of the proposed algorithm to outperform other algorithms.
Long memory analysis is one of the most active areas in econometrics and time series where various methods have been introduced to identify and estimate the long memory parameter in partially integrated time series. One of the most common models used to represent time series that have a long memory is the ARFIMA (Auto Regressive Fractional Integration Moving Average Model) which diffs are a fractional number called the fractional parameter. To analyze and determine the ARFIMA model, the fractal parameter must be estimated. There are many methods for fractional parameter estimation. In this research, the estimation methods were divided into indirect methods, where the Hurst parameter is estimated fir
... Show MoreA computational investigation is carried out in the field of charged particle optics with the aid of the numerical analysis methods. The work is concerned with the design of symmetrical double pole piece magnetic lens. The axial magnetic flux density distribution is determined by using exponential model, from which the paraxial-ray equation is solved to obtain the trajectory of particles that satisfy the suggested exponential model. From the knowledge of the first and second derivatives of axial potential distribution, the optical properties such as the focal length and aberration coefficients (radial distortion coefficient and spiral distortion coefficient) are determined. Finally, the pole piece profiles capable of pr
... Show MoreThe convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog
... Show MoreThe different interactions between cometary tail and solar wind ions are studied in the present paper based on three-dimensional Lax explicit method. The model used in this research is based on the continuity equations describing the cometary tail-solar wind interactions. Three dimensional system was considered in this paper. Simulation of the physical system was achieved using computer code written using Matlab 7.0. The parameters studied here assumed Halley comet type and include the particle density , the particles velocity v, the magnetic field strength B, dynamic pressure p and internal energy E. The results of the present research showed that the interaction near the cometary nucleus is mainly affected by the new ions added to the
... Show MoreIn this paper we used frequentist and Bayesian approaches for the linear regression model to predict future observations for unemployment rates in Iraq. Parameters are estimated using the ordinary least squares method and for the Bayesian approach using the Markov Chain Monte Carlo (MCMC) method. Calculations are done using the R program. The analysis showed that the linear regression model using the Bayesian approach is better and can be used as an alternative to the frequentist approach. Two criteria, the root mean square error (RMSE) and the median absolute deviation (MAD) were used to compare the performance of the estimates. The results obtained showed that the unemployment rates will continue to increase in the next two decade
... Show MoreThe paper generates a geological model of a giant Middle East oil reservoir, the model constructed based on the field data of 161 wells. The main aim of the paper was to recognize the value of the reservoir to investigate the feasibility of working on the reservoir modeling prior to the final decision of the investment for further development of this oilfield. Well log, deviation survey, 2D/3D interpreted seismic structural maps, facies, and core test were utilized to construct the developed geological model based on comprehensive interpretation and correlation processes using the PETREL platform. The geological model mainly aims to estimate stock-tank oil initially in place of the reservoir. In addition, three scenarios were applie
... Show MoreAs the bit rate of fiber optic transmission systems is increased to more than , the system will suffer from an important random phenomena, which is called polarization mode dispersion. This phenomenon contributes effectively to: increasing pulse width, power decreasing, time jittering, and shape distortion. The time jittering means that the pulse center will shift to left or right. So that, time jittering leads to interference between neighboring pulses. On the other hand, increasing bit period will prevent the possibility of sending high rates. In this paper, an accurate mathematical analysis to increase the rates of transmission, which contain all physical random variables that contribute to determine the transmission rates, is presen
... Show More