Finding communities of connected individuals in complex networks is challenging, yet crucial for understanding different real-world societies and their interactions. Recently attention has turned to discover the dynamics of such communities. However, detecting accurate community structures that evolve over time adds additional challenges. Almost all the state-of-the-art algorithms are designed based on seemingly the same principle while treating the problem as a coupled optimization model to simultaneously identify community structures and their evolution over time. Unlike all these studies, the current work aims to individually consider this three measures, i.e. intra-community score, inter-community score, and evolution of community over time. Here, we adopt a new perspective towards detecting the evolution of community structures. The proposed method realizes the decomposition of the problem into three essential components; searching in: intra-community connections, inter-community connections, and community evolution. A multi-objective optimization problem is defined to account for the different intra and inter community structures. Further, we formulate the community evolution problem as a Hidden Markov Model in an attempt to dexterously track the most likely sequence of communities. Then the new model, called Hidden Markov Model-based Multi-Objective evolutionary algorithm for Dynamic Community Detection (HMM-MODCD), uses a multi-objective evolutionary algorithm and Viterbi algorithm for formulating objective functions and providing temporal smoothness over time for clustering dynamic networks. The performance of the proposed algorithm is evaluated on synthetic and real-world dynamic networks and compared against several state-of-the-art algorithms. The results clearly demonstrate the effectiveness of the proposed algorithm to outperform other algorithms.
Silica-based mesoporous materials are a class of porous materials with unique characteristics such as ordered pore structure, large surface area, and large pore volume. This review covers the different types of porous material (zeolite and mesoporous) and the physical properties of mesoporous materials that make them valuable in industry. Mesoporous materials can be divided into two groups: silica-based mesoporous materials and non-silica-based mesoporous materials. The most well-known family of silica-based mesoporous materials is the Mesoporous Molecular Sieves family, which attracts attention because of its beneficial properties. The family includes three members that are differentiated based on their pore arrangement. In this review,
... Show MoreAnalyzing plantar pressure trajectories is crucial for assessing foot behavior in dynamic gait stability. We propose the identification of foot symmetry and the detection of deformities by analyzing the trajectories of the center of pressure (CoP) and peak pressure (PP). First, using a foot pressure mapping system, plantar pressure data are acquired during a normal gait cycle. After the data have been acquired, post processing extracts both the CoP and PP trajectories over the spatiotemporal domain of foot motion for each foot independently. For this purpose, we used the optical flow technique which accurately estimates the direction of foot motion. The extracted trajectories of each foot are then segmented into, the medial and lateral regi
... Show MoreRecent research has examined the improvement of physical and dielectric properties of BaTiO3 ceramic material by small addition of excess TiO2 or BaCO3. The prepared samples sintered at different temperatures and varying soaking time. The results show that increasing the sintering temperature within 1350°C and soaking time of 10 hrs give better electrical and physical properties, which indicate the reaction is complete at higher temperature and period.
Three cultivars of the crop Almash (Green Indian VC6089A10, Green Indian VC6173B1319, and Black Indian Gold Star) were tested in a field experiment during the 2022 growing season in Ramadi, Anbar province, to determine the impact of spraying levels of zinc (0, 25, and 50) mg Zn L-1 and manganese (0, 30, and 60) mg Mn L-1 on some growth characteristics. The experiment was conducted using a randomized complete block design (RCBD) with three replicates, with each treatment being tested in a separate split plot. The study found that there were statistically significant differences between zinc levels, with the level giving 50 mg Zn L-1