Finding communities of connected individuals in complex networks is challenging, yet crucial for understanding different real-world societies and their interactions. Recently attention has turned to discover the dynamics of such communities. However, detecting accurate community structures that evolve over time adds additional challenges. Almost all the state-of-the-art algorithms are designed based on seemingly the same principle while treating the problem as a coupled optimization model to simultaneously identify community structures and their evolution over time. Unlike all these studies, the current work aims to individually consider this three measures, i.e. intra-community score, inter-community score, and evolution of community over time. Here, we adopt a new perspective towards detecting the evolution of community structures. The proposed method realizes the decomposition of the problem into three essential components; searching in: intra-community connections, inter-community connections, and community evolution. A multi-objective optimization problem is defined to account for the different intra and inter community structures. Further, we formulate the community evolution problem as a Hidden Markov Model in an attempt to dexterously track the most likely sequence of communities. Then the new model, called Hidden Markov Model-based Multi-Objective evolutionary algorithm for Dynamic Community Detection (HMM-MODCD), uses a multi-objective evolutionary algorithm and Viterbi algorithm for formulating objective functions and providing temporal smoothness over time for clustering dynamic networks. The performance of the proposed algorithm is evaluated on synthetic and real-world dynamic networks and compared against several state-of-the-art algorithms. The results clearly demonstrate the effectiveness of the proposed algorithm to outperform other algorithms.
A Geographic Information System (GIS) is a computerized database management system for accumulating, storage, retrieval, analysis, and display spatial data. In general, GIS contains two broad categories of information, geo-referenced spatial data and attribute data. Geo-referenced spatial data define objects that have an orientation and relationship in two or three-dimensional space, while attribute data is qualitative data that can be counted for recording and analysis. The main aim of this research is to reveal the role of GIS technology in the enhancement of bridge maintenance management system components such as the output results, and make it more interpretable through dynamic colour coding and more sophisticated vi
... Show MoreBeta-thalassemia major (β-TM) is inheritable condition with many complications especially in children. The blood-borne viral infection was proposed as a risk factor due to recurrent blood transfusion regimen (hemotherapy).
This study aimed to investigate Human parvovirus B19 (PVB19) prevalence in β-TM patients by serological and molecular means.
This is a cross-section
Human cytomegalovirus (HCMV) infection is ubiquitous and successfully reactivated in patients with immune dysfunction as in patient with multiple myeloma (MM), causing a wide range of life-threatening diseases. Early detection of HCMV and significant advances in MM management has amended patient outcomes and prolonged survival rates.
The aim of the study was to estimate the frequency of active HCMV in MM patients.
This is a case–control study involved 50 MM patients attending Hematology Center, Bag
To determine the relationship between Helicobacter pylori infection and Multiple Sclerosis (MS) disorder, 20 patients with MS aged (25-60) years have been investigated from the period of 2016/12/1 to 2017/3/1 and compared to 15 apparently healthy individuals. All study groups were carried out to measure anti H.pylori IgA and H.pylori IgG antibodies by enzyme linked immunosorbent assay (ELISA) technique. There was a significant elevation (p<0.05) in the concentration of anti H.pylori IgG and IgA antibodies (Abs) compared to control group, and there was no significant difference (p>0.05) in the concentration of IgA and IgG (Abs) of H.pylori according to gender, and there was no significant difference (p>0.05) in the concentration of IgA and I
... Show MoreAbstract
The study seeks to use one of the techniques (Data mining) a (Logic regression) on the inherited risk through the use of style financial ratios technical analysis and then apply for financial fraud indicators,Since higher scandals exposed companies and the failure of the audit process has shocked the community and affected the integrity of the auditor and the reason is financial fraud practiced by the companies and not to the discovery of the fraud by the auditor, and this fraud involves intentional act aimed to achieve personal and harm the interests of to others, and doing (administration, staff) we can say that all frauds carried out through the presence of the motives and factors that help th
... Show MoreMedium Access Control (MAC) spoofing attacks relate to an attacker altering the manufacturer assigned MAC address to any other value. MAC spoofing attacks in Wireless Fidelity (WiFi) network are simple because of the ease of access to the tools of the MAC fraud on the Internet like MAC Makeup, and in addition to that the MAC address can be changed manually without software. MAC spoofing attacks are considered one of the most intensive attacks in the WiFi network; as result for that, many MAC spoofing detection systems were built, each of which comes with its strength and weak points. This paper logically identifies and recognizes the weak points
and masquerading paths that penetrate the up-to-date existing detection systems. Then the
Most intrusion detection systems are signature based that work similar to anti-virus but they are unable to detect the zero-day attacks. The importance of the anomaly based IDS has raised because of its ability to deal with the unknown attacks. However smart attacks are appeared to compromise the detection ability of the anomaly based IDS. By considering these weak points the proposed
system is developed to overcome them. The proposed system is a development to the well-known payload anomaly detector (PAYL). By
combining two stages with the PAYL detector, it gives good detection ability and acceptable ratio of false positive. The proposed system improve the models recognition ability in the PAYL detector, for a filtered unencrypt