Preferred Language
Articles
/
2hatUocBVTCNdQwCDkSU
Community detection model for dynamic networks based on hidden Markov model and evolutionary algorithm
...Show More Authors

Finding communities of connected individuals in complex networks is challenging, yet crucial for understanding different real-world societies and their interactions. Recently attention has turned to discover the dynamics of such communities. However, detecting accurate community structures that evolve over time adds additional challenges. Almost all the state-of-the-art algorithms are designed based on seemingly the same principle while treating the problem as a coupled optimization model to simultaneously identify community structures and their evolution over time. Unlike all these studies, the current work aims to individually consider this three measures, i.e. intra-community score, inter-community score, and evolution of community over time. Here, we adopt a new perspective towards detecting the evolution of community structures. The proposed method realizes the decomposition of the problem into three essential components; searching in: intra-community connections, inter-community connections, and community evolution. A multi-objective optimization problem is defined to account for the different intra and inter community structures. Further, we formulate the community evolution problem as a Hidden Markov Model in an attempt to dexterously track the most likely sequence of communities. Then the new model, called Hidden Markov Model-based Multi-Objective evolutionary algorithm for Dynamic Community Detection (HMM-MODCD), uses a multi-objective evolutionary algorithm and Viterbi algorithm for formulating objective functions and providing temporal smoothness over time for clustering dynamic networks. The performance of the proposed algorithm is evaluated on synthetic and real-world dynamic networks and compared against several state-of-the-art algorithms. The results clearly demonstrate the effectiveness of the proposed algorithm to outperform other algorithms.

Scopus Clarivate Crossref
View Publication
Publication Date
Tue Oct 22 2024
Journal Name
Iraqi Statisticians Journal
Inferential Methods for the Dagum Regression Model
...Show More Authors

The Dagum Regression Model, introduced to address limitations in traditional econometric models, provides enhanced flexibility for analyzing data characterized by heavy tails and asymmetry, which is common in income and wealth distributions. This paper develops and applies the Dagum model, demonstrating its advantages over other distributions such as the Log-Normal and Gamma distributions. The model's parameters are estimated using Maximum Likelihood Estimation (MLE) and the Method of Moments (MoM). A simulation study evaluates both methods' performance across various sample sizes, showing that MoM tends to offer more robust and precise estimates, particularly in small samples. These findings provide valuable insights into the ana

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
Ieee Access
IFFT-Based Microwave Non-Destructive Testing for Delamination Detection and Thickness Estimation
...Show More Authors

View Publication
Scopus (16)
Crossref (17)
Scopus Clarivate Crossref
Publication Date
Sun Dec 01 2002
Journal Name
Iraqi Journal Of Physics
An edge detection algorithm matching visual contour perception
...Show More Authors

For several applications, it is very important to have an edge detection technique matching human visual contour perception and less sensitive to noise. The edge detection algorithm describes in this paper based on the results obtained by Maximum a posteriori (MAP) and Maximum Entropy (ME) deblurring algorithms. The technique makes a trade-off between sharpening and smoothing the noisy image. One of the advantages of the described algorithm is less sensitive to noise than that given by Marr and Geuen techniques that considered to be the best edge detection algorithms in terms of matching human visual contour perception.

View Publication Preview PDF
Publication Date
Tue Jul 01 2014
Journal Name
Ieee Transactions On Circuits And Systems I: Regular Papers
Crosstalk-Aware Multiple Error Detection Scheme Based on Two-Dimensional Parities for Energy Efficient Network on Chip
...Show More Authors

Achieving reliable operation under the influence of deep-submicrometer noise sources including crosstalk noise at low voltage operation is a major challenge for network on chip links. In this paper, we propose a coding scheme that simultaneously addresses crosstalk effects on signal delay and detects up to seven random errors through wire duplication and simple parity checks calculated over the rows and columns of the two-dimensional data. This high error detection capability enables the reduction of operating voltage on the wire leading to energy saving. The results show that the proposed scheme reduces the energy consumption up to 53% as compared to other schemes at iso-reliability performance despite the increase in the overhead number o

... Show More
View Publication
Scopus (25)
Crossref (19)
Scopus Clarivate Crossref
Publication Date
Tue Jan 31 2023
Journal Name
International Journal Of Nonlinear Analysis And Applications
Survey on intrusion detection system based on analysis concept drift: Status and future directions
...Show More Authors

Nowadays, internet security is a critical concern; the One of the most difficult study issues in network security is "intrusion detection". Fight against external threats. Intrusion detection is a novel method of securing computers and data networks that are already in use. To boost the efficacy of intrusion detection systems, machine learning and deep learning are widely deployed. While work on intrusion detection systems is already underway, based on data mining and machine learning is effective, it requires to detect intrusions by training static batch classifiers regardless considering the time-varying features of a regular data stream. Real-world problems, on the other hand, rarely fit into models that have such constraints. Furthermor

... Show More
View Publication
Publication Date
Fri Oct 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Forecasting the financial failure of Islamic banks using the Altman model, ---- springate model and ---- Sherrod model / an analytical study in Islamic banks listed on the Iraq Stock Exchange
...Show More Authors

Profit is a goal sought by all banks because it brings them income and guarantees them survival and continuity, and on the other hand, facing commitments without financial crisis. Hence the idea of research in his quest to build scientific tools and means that can help bank management in particular, investors, lenders and others to predict financial failure and to detect early financial failures. The research has produced a number of conclusions, the most important of which is that all Islamic banks sample a safe case of financial failure under the Altman model, while according to the Springate model all Islamic banks sample a search for a financial failure except the Islamic Bank of Noor Iraq for Investment and Finance )BINI(. A

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Oct 23 2018
Journal Name
Journal Of Economics And Administrative Sciences
Compare some wavelet estimators for parameters in the linear regression model with errors follows ARFIMA model.
...Show More Authors

The aim of this research is to estimate the parameters of the linear regression model with errors following ARFIMA model by using wavelet method depending on maximum likelihood and approaching general least square as well as ordinary least square. We use the estimators in practical application on real data, which were the monthly data of Inflation and Dollar exchange rate obtained from the (CSO) Central Statistical organization for the period from 1/2005 to 12/2015. The results proved that (WML) was the most reliable and efficient from the other estimators, also the results provide that the changing of fractional difference parameter (d) doesn’t effect on the results.

View Publication Preview PDF
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
International Journal Of Agricultural And Statistical Sciences
ON ERROR DISTRIBUTION WITH SINGLE INDEX MODEL
...Show More Authors

In this paper, the error distribution function is estimated for the single index model by the empirical distribution function and the kernel distribution function. Refined minimum average variance estimation (RMAVE) method is used for estimating single index model. We use simulation experiments to compare the two estimation methods for error distribution function with different sample sizes, the results show that the kernel distribution function is better than the empirical distribution function.

Scopus
Publication Date
Fri Apr 30 2021
Journal Name
International Journal Of Intelligent Engineering And Systems
SMS Spam Detection Based on Fuzzy Rules and Binary Particle Swarm Optimization
...Show More Authors

View Publication
Scopus (12)
Crossref (6)
Scopus Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Ieee Access
Fast Shot Boundary Detection Based on Separable Moments and Support Vector Machine
...Show More Authors

View Publication
Scopus (29)
Crossref (26)
Scopus Clarivate Crossref