Finding communities of connected individuals in complex networks is challenging, yet crucial for understanding different real-world societies and their interactions. Recently attention has turned to discover the dynamics of such communities. However, detecting accurate community structures that evolve over time adds additional challenges. Almost all the state-of-the-art algorithms are designed based on seemingly the same principle while treating the problem as a coupled optimization model to simultaneously identify community structures and their evolution over time. Unlike all these studies, the current work aims to individually consider this three measures, i.e. intra-community score, inter-community score, and evolution of community over time. Here, we adopt a new perspective towards detecting the evolution of community structures. The proposed method realizes the decomposition of the problem into three essential components; searching in: intra-community connections, inter-community connections, and community evolution. A multi-objective optimization problem is defined to account for the different intra and inter community structures. Further, we formulate the community evolution problem as a Hidden Markov Model in an attempt to dexterously track the most likely sequence of communities. Then the new model, called Hidden Markov Model-based Multi-Objective evolutionary algorithm for Dynamic Community Detection (HMM-MODCD), uses a multi-objective evolutionary algorithm and Viterbi algorithm for formulating objective functions and providing temporal smoothness over time for clustering dynamic networks. The performance of the proposed algorithm is evaluated on synthetic and real-world dynamic networks and compared against several state-of-the-art algorithms. The results clearly demonstrate the effectiveness of the proposed algorithm to outperform other algorithms.
This work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it
... Show MoreDeep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to
... Show MoreThis paper proposes a completion that can allow fracturing four zones in a single trip in the well called “Y” (for confidential reasons) of the field named “X” (for confidential reasons). The steps to design a well completion for multiple fracturing are first to select the best completion method then the required equipment and the materials that it is made of. After that, the completion schematic must be drawn by using Power Draw in this case, and the summary installation procedures explained. The data used to design the completion are the well trajectory, the reservoir data (including temperature, pressure and fluid properties), the production and injection strategy. The results suggest that multi-stage hydraulic fracturing can
... Show MoreThe research tagged with the controversy of aesthetic interpretation between the sculptures and their titles in contemporary Iraqi sculpture, “Exhibition of Experiments in Contemporary Iraqi Sculpture as a Model”, and it is one of the new research that contributes to strengthening the critical path in the Iraqi fine movement, as the first chapter dealt with the research problem stemming from the question: What is the impact of the aesthetic hermeneutic controversy between the title and the title in contemporary Iraqi sculpture?, and do the titles of the sculptural works help to understand or enhance their contents?, The research objective included: To identify the controversy of the aesthetic interpretation of sculptures and their ti
... Show MoreIn a report by Transparency Organization in 2010, Iraq has 200 newspapers, magazines, sixty-seven radio stations and 45 satellite TV channels. The increase in these figures is measured in days or weeks and not months and years. This fact confirms the importance of studying content providers, especially youth sports content, for two reasons: the first is that young people constitute the highest percentage in Iraqi society, with all the potential involved in shaping the future aspects; the second reason is that for years sport has become an important pillar in people's lives not only in the entertainment aspect as it was seen in the past; Rather, sport has an influential presence in politi
... Show MoreWe have studied Bayesian method in this paper by using the modified exponential growth model, where this model is more using to represent the growth phenomena. We focus on three of prior functions (Informative, Natural Conjugate, and the function that depends on previous experiments) to use it in the Bayesian method. Where almost of observations for the growth phenomena are depended on one another, which in turn leads to a correlation between those observations, which calls to treat such this problem, called Autocorrelation, and to verified this has been used Bayesian method.
The goal of this study is to knowledge the effect of Autocorrelation on the estimation by using Bayesian method. F
... Show MoreThe aim of the current research is to identify the effect of the active thinking model in the achievement of students of the fifth grade applied science of physics, and their pivotal thinking by verifying the two zero hypotheses, where there is no significant difference at the level of significance (0.05) between the average scores of the experimental group who studied physics using the active thinking model and the average scores of the control group students who studied the same material in the usual way in the achievement test, as well as in the pivotal thinking test. The research sample consisted of (77) students of the applied fifth grade students in two divisions (a) and (b), randomly selected (a) to be the experimental group, and (b)
... Show MoreThis present work is concerned with one of the syntactic issues that has been researched by many linguists, grammarians, and specialists in Islamic studies, the estimated answer to a condition. However, this topic is researched this time by examining Imam Al-Qurtbi’s opinions in interpreting related ayas from the holly Quraan in his book (Collector of Quranic Rules) or its transliteration (Al-Jami’ Li Ahkam Al-Quran). Such a step involves commenting on, tracking what Al-Qurtbi said in this regard, discussing it from the points of view of other grammarians, and judging it accordingly, taking into account the apparent surface structures of the examples collected. To achieve this objective, the inductive analytical approach has be
... Show MoreAbstract:
The phenomenon of financial failure is one of the phenomena that requires special attention and in-depth study due to its significant impact on various parties, whether they are internal or external and those who benefit from financial performance reports. With the increase in cases of bankruptcy and default facing companies and banks, interest has increased in understanding the reasons that led to this financial failure. This growing interest should be a reason to develop models and analytical methods that help in the early detection of this increasing phenomenon in recent year . The research examines the use of
... Show MoreIn this research we study a variance component model, Which is the one of the most important models widely used in the analysis of the data, this model is one type of a multilevel models, and it is considered as linear models , there are three types of linear variance component models ,Fixed effect of linear variance component model, Random effect of linear variance component model and Mixed effect of linear variance component model . In this paper we will examine the model of mixed effect of linear variance component model with one –way random effect ,and the mixed model is a mixture of fixed effect and random effect in the same model, where it contains the parameter (μ) and treatment effect (τi ) which has
... Show More