Ternary semiconductors AB5C8 (A = Cu/Ag, B = In and C = S, Se or Te) have been investigated. The CuIn5S8 and AgIn5S8 have been synthesize in cubic spinel structure with space group (Fd3m), whereas CuIn5Se8, AgIn5Se8, CuIn5Te8 and AgIn5Te8 have tetragonal structures with space group P-42m. The relaxed crystal geometry, electrical properties such as electronic band structure and optoelectronic properties are predicted by using full potential method in this work. For the determination of relaxed crystal geometry, the gradient approximation (PBE-GGA) is used. All the studied compounds are semiconductors based on their band structures in agreement with the experimental results, and their bulk moduli are in the range 35 to 69 GPa. Wide absorption
... Show MoreResults of a study of alloys and films with various Pb content have been reported and discussed. Films of of thickness 1.5
In this work, ZnO nanostructures for powder ZnO were synthesized by Hydrothermal Method. Size and shape of ZnO nanostructureas can be controlled by change ammonia concentration. In the preparation of ZnO nanostructure, zinc nitrate hexahydrate [Zn(NO3)2·6H2O] was used as a precursor. The structure and morphology of ZnO nanostructure have been characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD). The synthesized ZnO nanostructures have a hexagonal wurtzite structure. Also using Zeta potential and Particle Size Analyzers and size distribution of the ZnO powder
The drill bit is the most essential tool in drilling operation and optimum bit selection is one of the main challenges in planning and designing new wells. Conventional bit selections are mostly based on the historical performance of similar bits from offset wells. In addition, it is done by different techniques based on offset well logs. However, these methods are time consuming and they are not dependent on actual drilling parameters. The main objective of this study is to optimize bit selection in order to achieve maximum rate of penetration (ROP). In this work, a model that predicts the ROP was developed using artificial neural networks (ANNs) based on 19 input parameters. For the
1-[4-(4-Acetyl-2-hydroxy-phenylazo)-phenyl]-ethanone (L1) and 1-[3-Hydroxy-4(4-nitro-phenylazo)-phenyl]-ethanone (L2) were readied by combination the diazonium salts of amines with 3-hydroxyacetophenone. (C.H.N) analyses, infrared spectra, UV–vis electronic absorption spectra, 1H and 13CNMR spectral mechanisms are use to identified of the ligands. Complexes of Ni+2 and Cu+2 were performed as well depicted. The formation of complexes has been identified by using atomic absorption of flame, elemental analysis, infrared spectra and UV-Vis spectral process as well conductivity and magnetic quantifications. Nature of compounds produced have been studied obeyed the mole ratio and continuous contrast methods, Beer's law followed during a concent
... Show More1-[4-(2-Hydroxy-4, 6-dimethyl-phenylazo)-phenol]-ethanone (HL1) and 2-(4-methoxy-phenylazo)-3, 5-dimethyl-phenol (HL2) were produced by combination the diazonium salts of amines with 3, 5-dimethylphenol. The geometry of azo compounds was resolved on the basis of (C.H.N) analyses, 1H and 13CNMR, FT-IR and UV-Vis spectroscopic mechanisms. Complexes of La (III) and Rh (III) have been performed and depicted. The formation of complexes has been identified by using elemental analysis, FT-IR and UV-Vis spectroscopic process as well, conductivity molar quantifications. Nature of complexes produced have been studied obeyed mole ratio and continuous alteration ways, Beer's law followed through a concentration scope (1×10-4 - 3×10-4 M). H
... Show MoreThis paper deals with constructing a model of fuzzy linear programming with application on fuels product of Dura- refinery , which consist of seven products that have direct effect ondaily consumption . After Building the model which consist of objective function represents the selling prices ofthe products and fuzzy productions constraints and fuzzy demand constraints addition to production requirements constraints , we used program of ( WIN QSB ) to find the optimal solution
Acid treatment is a widely used stimulation technique in the petroleum industry. Matrix acidizing is regarded as an effective and efficient acidizing technique for carbonate formations that leads to increase the fracture propagation, repair formation damage, and increase the permeability of carbonate rocks. Generally, the injected acid dissolves into the rock minerals and generates wormholes that modify the rock structure and enhance hydrocarbon production. However, one of the key issues is the associated degradation in the mechanical properties of carbonate rocks caused by the generated wormholes, which may significantly reduce the elastic properties and hardness of rocks. There have been several experimental and simulation studies regardi
... Show More