This paper presents a three-dimensional Dynamic analysis of a rockfill dam with different foundation depths by considering the dam connection with both the reservoir bed and water. ANSYS was used to develop the three-dimensional Finite Element (FE) model of the rockfill dam. The essential objective of this study is the discussion of the effects of different foundation depths on the Dynamic behaviour of an embanked dam. Four foundation depths were investigated. They are the dam without foundation (fixed base), and three different depths of the foundation. Taking into consideration the changing of upstream water level, the empty, minimum, and maximum water levels, the results of the three-dimensional FE modelling of the rockfill dam show that adding the water effect decreases the natural frequencies of the system, but not more than 45%. While, with the increase of the reservoir water level of the dam from minimum to maximum, the natural frequencies of the dam decreased, but not more than 13% in the case of maximum water level changes. The results show that the influence of changing the upstream water level affects the horizontal displacement of the dam more than the vertical displacement.
When the depth of stressed soil is rather small, Plate Load Test (PLT) becomes the most efficient test to estimate the soil properties for design purposes. Among these properties, modulus of subgrade reaction is the most important one that usually employed in roads and concrete pavement design. Two methods are available to perform PLT: static and dynamic methods. Static PLT is usually adopted due to its simplicity and time saving to be performs in comparison with cyclic (dynamic) method. The two methods are described in ASTM standard.
In this paper the effect of the test method used in PLT in estimation of some mechanical soil properties was distinguished via a series of both test methods applied in a same site. The comparison of
... Show MoreBackground: Diabetic mellitus (DM) is a collection of metabolic disorder identified by hyperglycemia. The heterogeneous etiology includes defects either in insulin secretion, or in insulin action, or the both. In addition to the distraction in carbohydrate, fat and protein metabolism. Inflammatory reaction that caused by many pro-inflammatory cytokines play a central role in the pathogenicity of T2DM, these cytokines can enhance insulin resistance which led to impaired glucose homeostasis. Subjects: The study included 75 patients (38 males and 37 females) suffering from T2DM with age mean ± SE 52.30 ± 1.60, and 70 individuals as healthy controls (35 males and 35 females) with age mean ± SE 48.88 ± 0.64. Evaluation of immunological marke
... Show MoreBackground: spontaneous abortion constitutes one of the most important adverse pregnancy outcomes affecting human reproduction, and its risk factors are not only affected by biological, demographic factors such as age, gravidity, and previous history of miscarriage,but also by individual women’s personal social characteristics, and by the larger social environment. Objective:To identifyEnvironmental effects on Women's with Spontaneous Abortion. Methodology:Non-probability(purposive sample)of(200) women, who were suffering from spontaneous abortion in maternity unitfrom four hospitals at Baghdad City which include Al-ElwiaMaternity Teaching Hospital, and Baghdad Teaching Hospital at Al-Russafa sector. Al–karckhMaternityHospita
... Show MoreChloroquine and Hydroxychloroquine drugs are widely prescribed for malaria disease. Since the end of 2019, humans have been under threat due to a disease called (COVID-19), which was first reported in China. Many methodical approaches have been reported to quantify chloroquine and hydroxychloroquine in blood, urine, plasma, serum, and pharmaceutical dosage form. Some of these techniques are spectrophotometry, liquid chromatography with a mass detector, gas chromatography, and ultra-performance, high-performance liquid chromatography (HPLC), in addition to electrochemical methods. This literature review discusses various analytical methods for the determining hydroxychloroquine and chloroquine.
In this paper, new approach based on coupled Laplace transformation with decomposition method is proposed to solve type of partial differential equation. Then it’s used to find the accurate solution for heat equation with initial conditions. Four examples introduced to illustrate the accuracy, efficiency of suggested method. The practical results show the importance of suggested method for solve differential equations with high accuracy and easy implemented.
Fluid-structure interaction method is performed to predict the dynamic characteristics of axial fan system. A fluid-structure interface physical environment method (monolithic method) is used to couple the fluid flow solver with the structural solver. The integration of the three-dimensional Navier-Stokes equations is performed in the time Doman, simultaneously to the integration of the three dimensional structural model. The aerodynamic loads are transfer from the flow to structure and the coupling step is repeated within each time step, until the flow solution and the structural solution have converged to yield a coupled solution of the aeroelastic set of equations. Finite element method is applied to solve numerically
... Show MoreThe response of the combustor’s liner to the air-flow that passes through it is the key reason for the combustion chambers noise, hence the instabilities of those chambers that decreases the mechanical efficiency of such sections, by increased its mechanical vibrations, which increases the failure rate created during originating of the cracks spreading by the shakes producing by the series of high-level frequencies. Accordingly, any work debating the impact of the context of liners in the combustion chamber can provide grasping for the combustion noise generated by the undesirable vibrations, and benefits the industrial firms to design an ideal production procedure which increases the lifespan of the combustor. The goal of this wo
... Show MoreThe response of the combustor’s liner to the air-flow that passes through it is the key reason for the combustion chambers noise, hence the instabilities of those chambers that decreases the mechanical efficiency of such sections, by increased its mechanical vibrations, which increases the failure rate created during originating of the cracks spreading by the shakes producing by the series of high-level frequencies. Accordingly, any work debating the impact of the context of liners in the combustion chamber can provide grasping for the combustion noise generated by the undesirable vibrations, and benefits the industrial firms to design an ideal production procedure which increases the lifespan of the combustor. The goal of this work is
... Show More