The term "nano gold," also known as "gold nanoparticles," is commonly used. These particles are extremely small, with a diameter of less than 100 nm, which is only a fraction of the width of a human hair. Due to their tiny size, nano gold particles are often found in a colloidal solution, where they are suspended in a liquid stabilizer. This colloidal gold is essentially another name for nano gold. The main method for producing gold nanoparticles in a colloidal solution is the citrate synthesis technique, which involves combining different solutions to precipitate the gold nanoparticles. In biological systems, copper complexes play a significant role at the active sites of many metalloproteins. These complexes have potential applications in various catalytic processes that occur in living organisms, such as electron transfer reactions and the activation of specific antitumor substances. These processes are relevant in the fields of medicinal chemistry and bioinorganic chemistry. The interaction of copper chelates with biological systems and their noteworthy activities against neoplastic, bacterial, fungal, and cancerous cells are also important. Many copper (II) N, S, O / N, N-donor chelators function as effective anticancer agents due to their ability to bind with DNA base pairs. Using hydrophilic gold nanoparticles (AuNPs) as carriers for copper complexes is a novel and purposeful strategy that Could raise these compounds' stability and solubility in H2O aqueous., thus enhancing their bioavailability. The regulated release of Cu-complexes made possible by this method also creates the possibility for fruitful in vivo and in vitro tests. The definition, significance, and numerous applications of copper complexes in connection to nanogold are presented in this review study
Variation in DNA, and genes to a lesser or greater extent, can play an important role in most diseases; that is because this variation in will reflect and affect the function of DNA, and genes (combined genes and DNA or separately). This can be affected by environment, life style, as well as the inheriting from parents and previous generations. All these factors can contribute in human diseases. There are different alterations in genes, like imbalance and inequality in chromosomes, disorder in gene (deficiency in gene, which could be complex or single disorder), and cancer. In the last decades, scientists were focus on medicine and genetics; they pay an extensive attention to reach better understanding about diseases and their cause
... Show MorePulsatile drug delivery systems (PDDS) are developed to deliver drug according to circadian behavior of diseases. They deliver the drug at the right time, action and in the right amount, which provides more benefit than conventional dosages and increased patient compliance. The drug is released rapidly and completely as a pulse after a lag time. These systems are beneficial for drugs with chrono-pharmacological behavior, where nighttime dosing is required and for the drugs having a high first-pass effect and having specific site of absorption in the gastrointestinal tract. This article covers methods and marketed technologies that have been developed to achieve pulsatile delivery. Diseases wherein PDDS are promising include asthma, peptic u
... Show MoreIn this research, we highlight the most important research related to the mixed ligand complexes of the drug trimethoprim (TMP), and for the past 7 years where this drug has been used as a chelating ligand and gives stability to the complexes with ions of metal elements where these complexes, prepared and diagnosed, and for some research the bacterial activity was studied against different types of bacteria.
In this research, we highlight the most important research related to the mixed ligand complexes of the drug trimethoprim (TMP), and for the past 7 years where this drug has been used as a chelating ligand and gives stability to the complexes with ions of metal elements where these complexes, prepared and diagnosed, and for some research the bacterial activity was studied against different types of bacteria
Skin drug administration is the method used to provide drugs for local or systemic therapy, which is recognized for clinical usage. It is the third-largest method of medication delivery, after only intravenous administration and oral administration. Using a transdermal delivery method makes the administration easy, and blood concentration and adverse effects can be reduced. A microneedle is a micron-sized needle with a short height of no more than 500 micrometers and a width of no more than 50 micrometers. The needle comes into contact with the epidermal layer of the skin before it gets to the dermal layer, where there is no discomfort. Several materials, such as metals, inorganic, and polymer materials, are used to create microneed
... Show MoreThe liver is one of the largest glands in the digestive system and performs 13 various functions, including the secretion of hormones and enzymes. The gallbladder serves as a storage reservoir for secretions before they are released into the digestive system through the duodenum. The bile ducts branch from the liver’s lobes and ultimately connect to the digestive system, making this structure significant and distinct among different animal species. This review focuses on the differences between dogs and cats, highlighting the importance of these differences from both health and pathological perspectives. After conducting a detailed scientific review of the biliary tree in dogs and cats, we concluded that cats are more susceptible to the d
... Show MoreCopper Telluride Thin films of thickness 700nm and 900nm, prepared thin films using thermal evaporation on cleaned Si substrates kept at 300K under the vacuum about (4x10-5 ) mbar. The XRD analysis and (AFM) measurements use to study structure properties. The sensitivity (S) of the fabricated sensors to NO2 and H2 was measured at room temperature. The experimental relationship between S and thickness of the sensitive film was investigated, and higher S values were recorded for thicker sensors. Results showed that the best sensitivity was attributed to the Cu2Te film of 900 nm thickness at the H2 gas.
The emergence of mixed matrix membranes (MMMs) or nanocomposite membranes embedded with inorganic nanoparticles (NPs) has opened up a possibility for developing different polymeric membranes with improved physicochemical properties, mechanical properties and performance for resolving environmental and energy-effective water purification. This paper presents an overview of the effects of different hydrophilic nanomaterials, including mineral nanomaterials (e.g., silicon dioxide (SiO2) and zeolite), metals oxide (e.g., copper oxide (CuO), zirconium dioxide (ZrO2), zinc oxide (ZnO), antimony tin oxide (ATO), iron (III) oxide (Fe2O3) and tungsten oxide (WOX)), two-dimensional transition (e.g., MXene), metal–organic framework (MOFs), c
... Show More