The term "nano gold," also known as "gold nanoparticles," is commonly used. These particles are extremely small, with a diameter of less than 100 nm, which is only a fraction of the width of a human hair. Due to their tiny size, nano gold particles are often found in a colloidal solution, where they are suspended in a liquid stabilizer. This colloidal gold is essentially another name for nano gold. The main method for producing gold nanoparticles in a colloidal solution is the citrate synthesis technique, which involves combining different solutions to precipitate the gold nanoparticles. In biological systems, copper complexes play a significant role at the active sites of many metalloproteins. These complexes have potential applications in various catalytic processes that occur in living organisms, such as electron transfer reactions and the activation of specific antitumor substances. These processes are relevant in the fields of medicinal chemistry and bioinorganic chemistry. The interaction of copper chelates with biological systems and their noteworthy activities against neoplastic, bacterial, fungal, and cancerous cells are also important. Many copper (II) N, S, O / N, N-donor chelators function as effective anticancer agents due to their ability to bind with DNA base pairs. Using hydrophilic gold nanoparticles (AuNPs) as carriers for copper complexes is a novel and purposeful strategy that Could raise these compounds' stability and solubility in H2O aqueous., thus enhancing their bioavailability. The regulated release of Cu-complexes made possible by this method also creates the possibility for fruitful in vivo and in vitro tests. The definition, significance, and numerous applications of copper complexes in connection to nanogold are presented in this review study
Soil pH is one of the main factors to consider before undertaking any agricultural operation. Methods for measuring soil pH vary, but all traditional methods require time, effort, and expertise. This study aimed to determine, predict, and map the spatial distribution of soil pH based on data taken from 50 sites using the Kriging geostatistical tool in ArcGIS as a first step. In the second step, the Support Vector Machines (SVM) machine learning algorithm was used to predict the soil pH based on the CIE-L*a*b values taken from the optical fiber sensor. The standard deviation of the soil pH values was 0.42, which indicates a more reliable measurement and the data distribution is normal.
The spectrum of clinical efficacy of Methotrexate (MTX) is broad in that MTX is used in the treatment of certain cancers, severe psoriasis and rheumatoid arthritis.Various mechanisms by which cancer cells grown in tissue culture become resistant to anticancer drugs. The use of multiple drugs with different mechanisms of entry into cells and different cellular targets allows for effective chemotherapy and high cure rates. In an efforts to develop effective strategies that increase the therapeutic potential of anticancer drugs with less systemic toxicity ,are being directed towards the investigation of dietary supplements and other phytotherapeutic agents for their synergistic efficacy in combination with anticancer drugs. A promi
... Show MoreWith the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vect
... Show MoreClassifying an overlapping object is one of the main challenges faced by researchers who work in object detection and recognition. Most of the available algorithms that have been developed are only able to classify or recognize objects which are either individually separated from each other or a single object in a scene(s), but not overlapping kitchen utensil objects. In this project, Faster R-CNN and YOLOv5 algorithms were proposed to detect and classify an overlapping object in a kitchen area. The YOLOv5 and Faster R-CNN were applied to overlapping objects where the filter or kernel that are expected to be able to separate the overlapping object in the dedicated layer of applying models. A kitchen utensil benchmark image database and
... Show MorePolycystic syndrome (PCOS) is a considerable infertility disorder in adolescents and adult women in reproductive age. Obesity is a vigorous risk factor related to POCS. This study aims to evaluate the association of obesity and PCOS by investigating several parameters including: anthropological, biochemical (lipid profile, fasting blood sugar, glucose tolerance test, and hormone levels (LH, FSH, LH/FSH ratio, Estradiol2 and Testosterone),and genetic parameters (Fat mass and Obesity associated gene (FTO) polymorphism at rs17817449) in 63 obese and non-obese PCOS women. The biochemical tests were investigated by colorimetric methods while FTO gene polymorp
... Show MorePolycystic syndrome (PCOS) is a considerable infertility disorder in adolescents and adult women in reproductive age. Obesity is a vigorous risk factor related to POCS. This study aims to evaluate the association of obesity and PCOS by investigating several parameters including: anthropological, biochemical (lipid profile, fasting blood sugar, glucose tolerance test, and hormone levels (LH, FSH, LH/FSH ratio, Estradiol2 and Testosterone),and genetic parameters (Fat mass and Obesity associated gene (FTO) polymorphism at rs17817449) in 63 obese and non-obese PCOS women. The biochemical tests were investigated by colorimetric methods while FTO gene polymorphism was detected by PCR–RFLP. Lipid profile, F
... Show MoreDrilling deviated wells is a frequently used approach in the oil and gas industry to increase the productivity of wells in reservoirs with a small thickness. Drilling these wells has been a challenge due to the low rate of penetration (ROP) and severe wellbore instability issues. The objective of this research is to reach a better drilling performance by reducing drilling time and increasing wellbore stability.
In this work, the first step was to develop a model that predicts the ROP for deviated wells by applying Artificial Neural Networks (ANNs). In the modeling, azimuth (AZI) and inclination (INC) of the wellbore trajectory, controllable drilling parameters, unconfined compressive strength (UCS), formation
... Show MoreIn this research, Argon gas was used to generate atmospheric plasma in the manufacture of platinum nanomaterials, to study the resultant plasma spectrum and to calculate the cellular toxicity of those manufactured nanomaterials. This research is keen on the generation of nonthermal atmospheric pressure plasma using aqueous platinum salts (H2PtCl6 6H2O) with different concentrations and exposure of cold plasma with a different time period used to produce platinum nanoparticles, to ensure typical preparation of nanoparticles. Visible UV and X-rays were performed for this purpose, and the diameter of the system probe was (1[Formula: see text]mm) with the Argon gas flow of
... Show MoreAutomatic speaker recognition may achieve remarkable performance in matched training and test conditions. Conversely, results drop significantly in incompatible noisy conditions. Furthermore, feature extraction significantly affects performance. Mel-frequency cepstral coefficients MFCCs are most commonly used in this field of study. The literature has reported that the conditions for training and testing are highly correlated. Taken together, these facts support strong recommendations for using MFCC features in similar environmental conditions (train/test) for speaker recognition. However, with noise and reverberation present, MFCC performance is not reliable. To address this, we propose a new feature 'entrocy' for accurate and robu
... Show MoreThe recent emergence of sophisticated Large Language Models (LLMs) such as GPT-4, Bard, and Bing has revolutionized the domain of scientific inquiry, particularly in the realm of large pre-trained vision-language models. This pivotal transformation is driving new frontiers in various fields, including image processing and digital media verification. In the heart of this evolution, our research focuses on the rapidly growing area of image authenticity verification, a field gaining immense relevance in the digital era. The study is specifically geared towards addressing the emerging challenge of distinguishing between authentic images and deep fakes – a task that has become critically important in a world increasingly reliant on digital med
... Show More