This study focuses on the implementation of interfaces for human machine interaction (HMI) control and monitor automatic production line. The automatic production line can performance feeding, transportation, sorting functions. The objectives of this study are implemented two SCADA/HMI system using two different software. TIA portal software is used to build HMI, alarm, and trends in touch panel which is helped an operator to control and monitor the production line. LabVIEW software is used to build HMI and trends in the computer screen and is linked with Microsoft Excel (ME) to generate information table helped to monitor the performance of the pneumatic equipment. The production line can do performance feeding, transportation, sorting functions, is designed and simulated in FACTORY IO software and implemented. S7-1200 PLC employed to control the automatic production line using ladder logic diagram on TIA PORTAL V13 software. Two methods are adopted to create Human Machine Interface (HMI) for monitoring the status of the system (touch panel interface and LabVIEW interface). The communication between master program TIA PORTAL V15 software and slave program LABVIEW is through OLE Process Control (OPC) service. OPC offers greater flexibility and lower costs of development, integration, and assembly for controlling and monitoring the industrial process, as well as OPC involves a wide variety of data resource. As a result, the realized system enables two human interfaces for controlling and monitoring the physical values of the pneumatic system processes and parameters. In addition, it provides a way for different
Multiplicative inverse in GF (2 m ) is a complex step in some important application such as Elliptic Curve Cryptography (ECC) and other applications. It operates by multiplying and squaring operation depending on the number of bits (m) in the field GF (2 m ). In this paper, a fast method is suggested to find inversion in GF (2 m ) using FPGA by reducing the number of multiplication operations in the Fermat's Theorem and transferring the squaring into a fast method to find exponentiation to (2 k ). In the proposed algorithm, the multiplicative inverse in GF(2 m ) is achieved by number of multiplications depending on log 2 (m) and each exponentiation is operates in a single clock cycle by generating a reduction matrix for high power of two ex
... Show MoreThe aims of this study are to measure the defect rate and analyze the problems of production of ready concrete mixture plant by using Six Sigma methodology which is a business strategy for operations improvement depending basically on the application of its sub-methodology DMAIC improvement cycle and the basic statistical tools where the process sigma level of concrete production in the case study was 2.41 σ.
In this paper the queuing system (M/Er/1/N) has been considered in equilibrium. The method of stages introduced by Erlang has been used. The system of equations which governs the equilibrium probabilities of various stages has been given. For general N the probability of j stages of service are left in the system, has been introduced. And the probability for the empty system has been calculated in the explicit form.
Abstract
For sparse system identification,recent suggested algorithms are
-norm Least Mean Square (
-LMS), Zero-Attracting LMS (ZA-LMS), Reweighted Zero-Attracting LMS (RZA-LMS), and p-norm LMS (p-LMS) algorithms, that have modified the cost function of the conventional LMS algorithm by adding a constraint of coefficients sparsity. And so, the proposed algorithms are named
-ZA-LMS,