People’s ability to quickly convey their thoughts, or opinions, on various services or items has improved as Web 2.0 has evolved. This is to look at the public perceptions expressed in the reviews. Aspect-based sentiment analysis (ABSA) deemed to receive a set of texts (e.g., product reviews or online reviews) and identify the opinion-target (aspect) within each review. Contemporary aspect-based sentiment analysis systems, like the aspect categorization, rely predominantly on lexicon-based, or manually labelled seeds that is being incorporated into the topic models. And using either handcrafted rules or pre-labelled clues for performing implicit aspect detection. These constraints are restricted to a particular domain or language which is domain-dependent. In this work, we first propose a novel unsupervised probabilistic model Topic-seeds Latent Dirichlet Allocation (TSLDA) that leverages semantic regularities for the articulation of explicit aspect-categories. Then, based on the articulated categories, a distributed vector is used for the identification of implicit aspects. The experimental results show that our approach outperforms baseline methods for different domain-data with minimal configurations. Specifically, utilizing the RI measure, our proposed TSLDA outperformed multiple clustering and topic models by an average of 0.83% in diverse domain-data, and roughly 0.89% using the Precision metric for implicit aspect detection.
Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreThis work was conducted to study the extraction of pelletierine sulphate from Punica granatum L. roots by liquid membrane techniques. Pelletierine sulphate is used widely in medicine. The general behavior of extraction process indicates that pelletierine conversion increased with increasing the number of stages and the discs rotation speed but high rotation speed was not favored because of the increased risk of droplet formation during the operation. The pH of feed and acceptor solution was also important. The results exhibit that the highest pelletierine conversion was obtained when using two stages,(10 rpm) discs speed of stainless steel discs,(pH= 9.5) of feed solution and (pH= 2) of acceptor solution in n-decane. Assuming the existence
... Show MoreThis work was conducted to study the extraction of pelletierine sulphate from Punica granatum L. roots by liquid membrane techniques. Pelletierine sulphate is used widely in medicine. The general behavior of extraction process indicates that pelletierine conversion increased with increasing the number of stages and the discs rotation speed but high rotation speed was not favored because of the increased risk of droplet formation during the operation. The pH of feed and acceptor solution was also important. The results exhibit that the highest pelletierine conversion was obtained when using two stages, (10 rpm) discs speed of stainless steel discs, (pH=9.5) of feed solution and (pH=2) of acceptor solution in n-decane. Assuming the existen
... Show MoreLipase enzyme has attracted a lot of attention in recent years because of its diverse biotechnological applications. The present study was conducted to screen germinated seeds of four crops, namely sunflower (Helianthus annuus), flaxor linseed (Linum usitatissimum ), peanut (Arachis hypogaea ) and castor bean (Ricinus communis), for the activity of their lipases. to the study also included the extraction and purification of lipase from the seeds of the most promising crop using different solvents.
The results indicated that the maximum enzymatic activity (0.669 U/ml) was obtained when 0.1 M Tris-HCl buffer extract was used after 3 days of seed germination of all the tested spe
... Show MoreIntroduction: The study was intended for Roseomonas gilardii NTCC 13290 strain pigment extraction and characterization. Methodology: The pigment-producing bacterial were cultured on Columbia blood agar and nutrient media agar. Then the pigments were extracted by ethanol. The candidate pigment was further characterized by different biotechnological techniques: UV-Vis spectroscopy, FT-IR to analyze the functional group of the targeted pigment, and TLC media. Results: The cultivation of Roseomonas gilardii on media showed pink color and nearly runny texture. The bacterial colonies were microscopically gram stained and examined, the R. gilardii was seen as coccobacillus colonies that mostly form pairs arranged as short chains. The R. gilardii b
... Show MoreLipoxygenase was extracted from the cup of Pleurotus ostreatus ( Jaq : Fr ) oyster mushroom for the first time in Iraq, and purified homogeneously through precipitation with 40% saturation of (NH4)2SO4 as a partial purification then loaded on DEAE-Cellulose (Diethyl amino ethyl Cellulose) ion-exchange chromatography column and then the highly active elution parts have been passed through gel filtration column with Sephacryl S-300 as a final purification with 804 (U/mg protein) specific activity, 11.32 fold of purification and 36.54% yield . The molecular weight of the enzyme was estimated to 74 KDa by gel filtration Sephacryl S-300 column and the isoelectric point for enzyme was 5.3. The optimal pH for lipoxygenase activity and stability
... Show MoreThis research presents a study in ultra-desulfurization of diesel fuel produced from conventional hydro desulfurization process, using oxidation and solvent extraction techniques. Dibenzothiophene (DBT) was the organosulfur compound that had been detected in sulfur removal. The oxidation process used hydrogen peroxide as an oxidant and acetic acid as homogeneous catalyst . The solvent extraction process used acetonitrile (ACN) and N-methyl – 2 - pyrrolidone (NMP) as extractants . Also the effect of five parameters (stirring speed :150 , 250 , 350 , and 450) rpm, temperature (30 , 40 , 45 , and 50) oC, oxidant/simulated diesel fuel ratio (0.5 , 0.75 , 1 , and 1.5) , catalyst/oxidant ratio(0.125,0.25,0.5
... Show MoreA sensitive spectrophotometric method was developed for the estimation of cefdinir (CFD), a cephalosporin species. This study involves two methods, and the first method includes the preparing of azo dye by the reaction of CFD diazonium salt with 4-Tert-Butylphenol (4-TBP) and 2-Naphthol (2-NPT) in alkaline medium, which shows colored dyes measured at λmax 490 and 535 nm, respectively. Beer's law was obeyed along the concentration range of (3-100) μg.ml-1. The limits of detection were 0.246, 0.447 μg.ml-1 and molar absorptivities were 0.6129×104, 0.3361×104 L.mol-1cm-1 for (CFD-4-TBP) and (CFD-2-NPT), respectively. The second method includes preconcentration for cefdinir dyes by using cloud point extraction in the presence of Triton
... Show More