In this research, we have achieved the description of radionuclides that exist in the samples of Diyala river sediments as well as to measure the specific activities using gamma-ray spectroscopy. The eleven samples were collected among the length of Diyala River starting from Al- Rustumiya and finishing at the point where Diyala River meets Tigris which is in Baghdad. Gamma-ray spectrometry system consists of high-purity germanium detector (HpGe) with 50% efficiency and resolution (2.2 keV) for the energy (1332 keV) was used for standard source 60Co. Card spectrum analyzer connected to the PC type Pentium 4 was used to view the spectrum. And rates of the speci
... Show MoreThree cultivars of the crop Almash (Green Indian VC6089A10, Green Indian VC6173B1319, and Black Indian Gold Star) were tested in a field experiment during the 2022 growing season in Ramadi, Anbar province, to determine the impact of spraying levels of zinc (0, 25, and 50) mg Zn L-1 and manganese (0, 30, and 60) mg Mn L-1 on some growth characteristics. The experiment was conducted using a randomized complete block design (RCBD) with three replicates, with each treatment being tested in a separate split plot. The study found that there were statistically significant differences between zinc levels, with the level giving 50 mg Zn L-1
AA wahid, journal mustansiriyah of sports science, 2023
Activity recognition (AR) is a new interesting and challenging research area with many applications (e.g. healthcare, security, and event detection). Basically, activity recognition (e.g. identifying user’s physical activity) is more likely to be considered as a classification problem. In this paper, a combination of 7 classification methods is employed and experimented on accelerometer data collected via smartphones, and compared for best performance. The dataset is collected from 59 individuals who performed 6 different activities (i.e. walk, jog, sit, stand, upstairs, and downstairs). The total number of dataset instances is 5418 with 46 labeled features. The results show that the proposed method of ensemble boost-based classif
... Show MoreMachine learning models have recently provided great promise in diagnosis of several ophthalmic disorders, including keratoconus (KCN). Keratoconus, a noninflammatory ectatic corneal disorder characterized by progressive cornea thinning, is challenging to detect as signs may be subtle. Several machine learning models have been proposed to detect KCN, however most of the models are supervised and thus require large well-annotated data. This paper proposes a new unsupervised model to detect KCN, based on adapted flower pollination algorithm (FPA) and the k-means algorithm. We will evaluate the proposed models using corneal data collected from 5430 eyes at different stages of KCN severity (1520 healthy, 331 KCN1, 1319 KCN2, 1699 KCN3 a
... Show MoreIn this study, the dynamic modeling and step input tracking control of single flexible link is studied. The Lagrange-assumed modes approach is applied to get the dynamic model of a planner single link manipulator. A Step input tracking controller is suggested by utilizing the hybrid controller approach to overcome the problem of vibration of tip position through motion which is a characteristic of the flexible link system. The first controller is a modified version of the proportional-derivative (PD) rigid controller to track the hub position while sliding mode (SM) control is used for vibration damping. Also, a second controller (a fuzzy logic based proportional-integral plus derivative (PI+D) control scheme) is developed for both vibra
... Show More