One of the diseases on a global scale that causes the main reasons of death is lung cancer. It is considered one of the most lethal diseases in life. Early detection and diagnosis are essential for lung cancer and will provide effective therapy and achieve better outcomes for patients; in recent years, algorithms of Deep Learning have demonstrated crucial promise for their use in medical imaging analysis, especially in lung cancer identification. This paper includes a comparison between a number of different Deep Learning techniques-based models using Computed Tomograph image datasets with traditional Convolution Neural Networks and SequeezeNet models using X-ray data for the automated diagnosis of lung cancer. Although the simple details provided by the X-ray images dataset, the study showed that the using of X-ray data set in our deep learning algorithm could provide promising results by getting accuracy of validation for both Convolution Neural Network and SequeezeNet models 93%, 76%, respectively while the validation loss in both models Convolution Neural Network and SequeezeNet 34%, 30% respectively, these promise results will make the physician give a swift decision in diagnosis of lung cancer and keeping the patients away from exposing to unnecessary extra radiation dose during the Computed Tomograph exam as well as the low cost of X-ray examination comparing with Computed Tomograph exam.
Cryptocurrency became an important participant on the financial market as it attracts large investments and interests. With this vibrant setting, the proposed cryptocurrency price prediction tool stands as a pivotal element providing direction to both enthusiasts and investors in a market that presents itself grounded on numerous complexities of digital currency. Employing feature selection enchantment and dynamic trio of ARIMA, LSTM, Linear Regression techniques the tool creates a mosaic for users to analyze data using artificial intelligence towards forecasts in real-time crypto universe. While users navigate the algorithmic labyrinth, they are offered a vast and glittering selection of high-quality cryptocurrencies to select. The
... Show MoreClinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classifier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision b
Non-Small Cell Lung Cancer (NSCLC) accounts for about 84% of all lung cancer types diagnosed so far. Every year, regardless of gender, the NSCLC targets many communities worldwide. 5-Fluorouracil (5-FU) is a uracil-analog anticancer compound. This drug tends to annihilate multiple tumour cells. But 5-FU's most significant obstacle is that it gets very easily metabolized in the blood, which eventually leads to lower anticancer activity. Therfore a perfect drug delivery system is needed to overcome all the associated challenges.
In this experiment, an attempt was made to prepare 5-FU loaded poly lactic-co-glycolic acid nanoparticles using solvent evaporation method and subsequently observed the effect of molecular weight of poly l
... Show MoreAbstract Software-Defined Networking (commonly referred to as SDN) is a newer paradigm that develops the concept of a software-driven network by separating data and control planes. It can handle the traditional network problems. However, this excellent architecture is subjected to various security threats. One of these issues is the distributed denial of service (DDoS) attack, which is difficult to contain in this kind of software-based network. Several security solutions have been proposed recently to secure SDN against DDoS attacks. This paper aims to analyze and discuss machine learning-based systems for SDN security networks from DDoS attack. The results have indicated that the algorithms for machine learning can be used to detect DDoS
... Show MoreComputer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the bes
... Show MoreObjective: Zerumbone (ZER) is a well-known natural compound that has been reported to have anti-cancer effect. Thus, this study investigated the ZER potential to inhibit Thymidine Phosphorylase (TP) and the ability to trigger Reactive oxygen species (ROS)-mediated cytotoxicity in non-small cell lung cancer, NCI-H460, cell line. Material and Method: The antiangiogenic activity for ZER was evaluated by using the thymidine phosphorylase inhibitory test. Reactive oxygen species (ROS) production was determined via DCFDA dye by using flow cytometry. Result and Discussion: ZER was found to be potent TP inhibitory with the IC50 value of 50.3± 0.31 μg/ml or 230±1.42 µM. NCI-H460 cells upon treatment with ZER produced sign
... Show MoreObjective: Zerumbone (ZER) is a well-known natural compound that has been reported to have anti-cancer effect. Thus, this study investigated the ZER potential to inhibit Thymidine Phosphorylase (TP) and the ability to trigger Reactive oxygen species (ROS)-mediated cytotoxicity in non-small cell lung cancer, NCI-H460, cell line. Material and Method: The antiangiogenic activity for ZER was evaluated by using the thymidine phosphorylase inhibitory test. Reactive oxygen species (ROS) production was determined via DCFDA dye by using flow cytometry. Result and Discussion: ZER was found to be potent TP inhibitory with the IC50 value of 50.3± 0.31 μg/ml or 230±1.42 µM. NCI-H460 cells upon treatment with ZER produced sign
... Show More