One of the diseases on a global scale that causes the main reasons of death is lung cancer. It is considered one of the most lethal diseases in life. Early detection and diagnosis are essential for lung cancer and will provide effective therapy and achieve better outcomes for patients; in recent years, algorithms of Deep Learning have demonstrated crucial promise for their use in medical imaging analysis, especially in lung cancer identification. This paper includes a comparison between a number of different Deep Learning techniques-based models using Computed Tomograph image datasets with traditional Convolution Neural Networks and SequeezeNet models using X-ray data for the automated diagnosis of lung cancer. Although the simple details provided by the X-ray images dataset, the study showed that the using of X-ray data set in our deep learning algorithm could provide promising results by getting accuracy of validation for both Convolution Neural Network and SequeezeNet models 93%, 76%, respectively while the validation loss in both models Convolution Neural Network and SequeezeNet 34%, 30% respectively, these promise results will make the physician give a swift decision in diagnosis of lung cancer and keeping the patients away from exposing to unnecessary extra radiation dose during the Computed Tomograph exam as well as the low cost of X-ray examination comparing with Computed Tomograph exam.
Monaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achi
... Show MoreBackground: Lung cancer is responsible for the most
cancer deaths in both men and women throughout the
world. Deaths from lung cancer (160,440 in 2004,
according to the National Cancer Institute) exceed the
number of deaths from four other major cancers combined
(breast, colon, pancreatic and prostate).
Objective: To assess the behavior and the approaches of
lung cancer in a sample of Iraqi patients.
Methods: This descriptive retrospective study was
performed using the records of 390 patients proved to have
lung cancer that had attending the Thoracic Surgery
Department of Surgical Specialties Hospital-Medical City
\Baghdad for the period from January, 1st
, 2001 to
December, 31st
,2002.
Res
AR Al-Heany BSc, PKESMD MSc., PSAANBS PhD, APAANMD MSc., DDV, FICMS., IOSR Journal of Dental and Medical Sciences (IOSR-JDMS), 2014 - Cited by 14
Patients infected with the COVID-19 virus develop severe pneumonia, which typically results in death. Radiological data show that the disease involves interstitial lung involvement, lung opacities, bilateral ground-glass opacities, and patchy opacities. This study aimed to improve COVID-19 diagnosis via radiological chest X-ray (CXR) image analysis, making a substantial contribution to the development of a mobile application that efficiently identifies COVID-19, saving medical professionals time and resources. It also allows for timely preventative interventions by using more than 18000 CXR lung images and the MobileNetV2 convolutional neural network (CNN) architecture. The MobileNetV2 deep-learning model performances were evaluated
... Show MoreIdentifying breast cancer utilizing artificial intelligence technologies is valuable and has a great influence on the early detection of diseases. It also can save humanity by giving them a better chance to be treated in the earlier stages of cancer. During the last decade, deep neural networks (DNN) and machine learning (ML) systems have been widely used by almost every segment in medical centers due to their accurate identification and recognition of diseases, especially when trained using many datasets/samples. in this paper, a proposed two hidden layers DNN with a reduction in the number of additions and multiplications in each neuron. The number of bits and binary points of inputs and weights can be changed using the mask configuration
... Show MoreThe convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog
... Show MoreBackground: Lung cancer is a common disease for patients over the age of 50 years, especially males due to smoking habits. This study aimed to compare the modulation complexity score (MCS) for the advanced treatment planning techniques which the intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT). Materials and Methods: Thirty patients who had non-small lung cancerous tumors on their left side participated in this study. The range ages were 68 to 98 years, the heights were between 151 and 182cm and they having weights from 46 to 79 kg. For Each patient will create two plans dial using two different techniques, which will be Intensity Modulated Radiation Therapy (IMRT) and Volumetric Modulated Arc Therapy
... Show More