Immunosuppressive cytokines are the main components of the tumor microenvironment and perform a vital function in controlling the immune response to malignant neoplasms.The objective: to study the influence of interleukin-4 (IL-4) and transforming growth factor-β3 (TGF-β3) on the development of breast tumors in women.Materials and methods. The concentration of cytokines IL-4 and TGF-β3 in blood serum was determined in 40 women with benign breast tumors, 40 women with malignant breast tumors, and 40 healthy patients without breast pathology, who were included in the control group.Breast cancer (BC) patients were divided into two groups; the first group included patients with the II stage of BC, who were considered to have a low level of BC, and the second group included patients with III and IV stages of BC, who were considered to have a high level. The method of solid phase immunoenzymatic analysis was used to determine the level of cytokines.Results. The results showed that women with benign breast tumors (86.82±1.67 pg/ml) had no statistically significant difference in IL-4 levels compared to the control group (88.25±1.56 pg/ml). However, a significantly higher level of IL-4 (P=0.0001) was found in women with BC (97.12±1.84 pg/ml) compared to the control group.In addition, the results showed that the concentration of TGF-β3 did not increase significantly in women with benign breast tumors (80.84±2.88 pg/ml) compared with patients with BC and controls (80.84±2.88 and 87.89±2.41 pg/ml, respectively). However, the level of TGF-β3 was significantly higher (P=0.01) in women with BC compared to the control group.Conclusions. The results of the current study indicate that the concentrations of TGF-β3 and IL-4 in the blood serum of women may be useful predictors for the early detection of breast cancer, as well as serve as a prognostic indicator of its development.
Carbon dioxide (CO2) capture and storage is a critical issue for mitigating climate change. Porous aromatic Schiff base complexes have emerged as a promising class of materials for CO2 capture due to their high surface area, porosity, and stability. In this study, we investigate the potential of Schiff base complexes as an effective media for CO2 storage. We review the synthesis and characterization of porous aromatic Schiff bases materials complexes and examine their CO2 sorption properties. We find that Schiff base complexes exhibit high CO2 adsorption capacity and selectivity, making them a promising candidate for use in carbon capture applications. Moreover, we investigate the effect of various parameters such as temperature, and pressu
... Show MoreThe use of blended cement in concrete provides economic, energy savings, and ecological benefits, and also provides. Improvement in the properties of materials incorporating blended cements. The major aim of this investigation is to develop blended cement technology using grinded local rocks . The research includes information on constituent materials, manufacturing processes and performance characteristics of blended cements made with replacement (10 and 20) % of grinded local rocks (limestone, quartzite and porcelinite) from cement.
The main conclusion of this study was that all ty
... Show MoreAnaerobic digestion is a technology widely used for treatment of organic waste for biogas production as a source for clean energy. In this study, poultry house wastes (PHW) material was examined as a source for biogas production. The effects of inoculum addition, pretreatment of the substrate, and temperature on the biogas production were taken into full consideration. Results revealed that the effect of inoculum addition was more significant than the alkaline pretreatment of raw waste materials. The biogas recovery from inoculated waste materials exceeds its production from wastes without inoculation by approximately 70% at mesophilic conditions. Whereby, the increase of biogas recovery from pretreated wastes was by 20% higher than its
... Show MoreDecolorization of red azo dye (Cibacron Red FN-R) from synthetic wastewater has been investigated as a function of solar advanced oxidation process. The photocatalytic activity using ZnO as a photocatalysis has been estimated. Different parameters affected the removal efficiency, including pH of the solution, initial dye concentration and H2O2 concentration were evaluated to find out the optimum value of these parameters. The results proved that the optimal pH value was 8 and the most efficient H2O2 concentration was 100mg/L. Toxicity reduction percent for effluent solution was also monitored to assess the degradation process. This treatment method was able to strongly reduce the color and toxicity of reactive red dye-238 to about (99 an
... Show MoreAbstract A description study was carried through out the present study aimed to assess health education provided by nurses to patient with gall stone "obstructive jaundice". The study was conducted at 4 teaching hospital, Baghdad teaching hospital, Al-Karama teaching hospital, Al-Yarmook teaching hospital, Al-Kendy teaching hospital where choloecystectomy was performed, in the period from first of June 2004 to end of July 2004. Data were collected through the use of questionnaire an interview from which was developed for the purpose of the present study. A non-probability (purposive) sample which was consist
The detection of diseases affecting wheat is very important as it relates to the issue of food security, which poses a serious threat to human life. Recently, farmers have heavily relied on modern systems and techniques for the control of the vast agricultural areas. Computer vision and data processing play a key role in detecting diseases that affect plants, depending on the images of their leaves. In this article, Fuzzy- logic based Histogram Equalization (FHE) is proposed to enhance the contrast of images. The fuzzy histogram is applied to divide the histograms into two subparts of histograms, based on the average value of the original image, then equalize them freely and independently to conserve the brightness of the image. The prop
... Show MoreIn this study, the surface of the epoxy/Al composite is treated using a dielectric barrier discharge (DBD) plasma in the presence of air. The epoxy composite was prepared by mixing 0.1g and 0.3 g aluminum powder with epoxy resin and its hardener in a ratio of 3:1. The surface epoxy/Al composite as a dielectric barrier layer (DB) is studied at an applied frequency of 8 kHz and at three exposure times 0, 2, and 4 min. The UV degradation process has been studied using UV-Visible spectroscopy, for these polymers. The absorbance intensity in the UV region (200–320 nm) was high. The absorbance level decreased after 2 minutes and increased after 4 min exposure time. Before exposure to plasma, the epoxy/Al composite at 0.1 g Al ha
... Show MoreFor more than a decade, externally bonded carbon fiber reinforced polymer (CFRP) composites successfully utilized in retrofitting reinforced concrete structural elements. The function of CFRP reinforcement in increasing the ductility of reinforced concrete (RC) beam is essential in such members. Flexural and shear behaviors, ductility, and confinement were the main studied properties that used the CFRP as a strengthening material. However, limited attention has been paid to investigate the energy absorption of torsion strengthening of concrete members, especially two-span concrete beams. Hence, the target of this work is to investigate the effectiveness of CFRP-strengthening technique with regard to energy absorption of two-span RC
... Show More