This new azo dye 7-(3-hydroxy-phenylazo)-quinoline-8-ol was subsequently used to prepare a series of complexes with the chlorides of Fe, Co, Zn, Ru, Rh and Cd. The compounds identified by 1H and 13C-NMR, FT-IR, UV-Vis, mass spectroscopy, as well as TGA, DSC, and C.H.N., conductivity, magnetic susceptibility, metal and chlorine content. The results showed that the ligand behaves in a trigonal behavior, and that the complexes gave tetrahedral, except for Fe, Ru and Rh octahedral was given, that all of them are non-electrolytes. The effectiveness of both the compounds in inhibiting free radicals was evaluated by the ability to act as an antioxidant was measured using DPPH as a free radical and gallic acid as a standard substance, the IC50 value was determined, because the ligand was found to have a higher ability to inhibit free radicals, and the ability to inhibit the complex varied according to the IC50 value. Cobalt, zinc and ruthenium complexes were evaluated as anticancer agents breast cancer MCF-7 in five concentration, the results showed that the IC50 value for Zn was 43.38 µg/mL, while the ruthenium complex gave 63.57, cobalt complex gave 93.84 µg/mL, meaning that the Zn-complex gave a higher inhibition value than Ru and Co. KEY WORDS: Antioxidant, Azo dye complexes, 8-Hydroxyquinoline, Anticancer Bull. Chem. Soc. Ethiop. 2025, 39(5), 859-875. DOI: https://dx.doi.org/10.4314/bcse.v39i5.5
New ligands, N1, N4-bis (benzo[d]thiazol-2- ylcarbamothioyl) succinamide (L1) and N1, N4- bis (benzylcarbamothioyl)succinamide (L2), derived from succinyl chloride and 2-amino benzothiazole or benzylamine, respectively, have been used to prepare a set of transition metal complexes with the general formula [M2(L)Cl4], where L=L1 or L2, M = Mn(II), Ni(II), Cu(II), Cd(II), Co(II), Zn(II) or Hg(II). The synthesized compounds were characterized using various analytical techniques including TGA, 13C NMR, mass spectroscopy, 1H and Fourier-transform infrared (FTIR) spectroscopy, magnetic measurement, molar conductivity, electronic spectrum, (%M, %C, %H, %N) and atomic absorption flame (AAF) analysis. The results showed that (L1, L2) bin
... Show MoreA new set of metal complexes by the general formula [M(P)2(H2O)2]Cl2 has been prepared through the interaction of the new Ligand [N1, N4-bis(4-methoxyphenyl)succinamide] (P) derived from succinyl chloride with p-anisidine with the transition metal ions [Cu(II), Mn(II), Cd(II), Co(II) and Ni(II)]. Compounds diagnosed by TGA, 1 H, 13CNMR and Mass spectra (for (P)), Fourier-transform infrared and Electronic spectrum, Magnetic measurement, molar conduct, (%M, %C, %H, %N). These measurements indicate that (P) is associated with the metal ion in a bi-dentate fashion by nitrogen atoms (the amide group), and the octahedral composition of these complexes is suggested. Staphylococcus Aureus (+) and Escherichia Coli (–) were studied for the antibact
... Show More2-(2-amino-5-nitro-phenylazo) -phenol was ready by grouping the diazonium salt of 2-aminophenol with 4-nitroaniline.Thegeometry of azo ligand(HL)was resolved on the origin of (C.H.N) analysis, 1H and 13CNMR spectra, infrared spectra and UV–vis electronic absorption spectra. Dealing with the azo ligand produced with Nd+3,Cd+3,Dy+3 and Er+3at aqueous ethanol for a 1:2 metal: ligand rate, and in perfect ph. The formation for compounds have been described by utilizing flame atomic absorption,(C.H.N) Analyses, conductivity, infrared spectra and UV–vis spectral procedures. Nature in the produced compounds have been studied obey the ratio of mole and continuous variance manners, Beer's law yielded up a concentration rate (1×10-4 - 3×10-4M) .
... Show More2-(2-amino-5-nitro-phenylazo),-phenol was ready by grouping the diazonium salt of 2-aminophenol with 4-nitroaniline.Thegeometry of azo ligand(HL)was resolved on the origin of (C.H.N) analysis,1H and 13CNMR spectra, infrared spectra and UV–vis electronic absorption spectra. Dealing with the azo ligand produced with Rh+3 and La+3ataqueous ethanol for a 1:3 metal: ligand rate, and in perfect ph. The formation for compounds have been described by utilizing flame atomic, absorption,(C.H.N),Analyses, conductivity, infrared spectra and UV–vis spectral procedures. Nature in the produced compounds, have been studied, obey the ratio of mole and continuous, variance, manners, Beer's law, yielded up a concentration, rate (1×10-4- 3×10-4M),. High
... Show More6-(2-benzathiazolyl azo),-3,5-dimethylphenol was formed by grouping the 2- benzothiazole diazonium chloride with 3,5-dimethylphenol. Azo ligand(L) was resolved on the origin by 1H and 13CNMR, FTIR and UV-V is spectral analysis. Complexation of tridentate ligand (L) with Co2+, Ni2+, Cu2+ and Zn2+ in aqueous of ethyl alcohol with a 1:2 metal:ligand, and at ideal pH.. The formation of metal chelates are assigned using flame atomic, absorption, FTIR, and UV-Vis spectral analysis, other than conductivity and magnetic estates. The nature of the metal chelates were carried out by mole ratio and continuous, variation mechanism, Beer's law, followed the rate (0.0001 - 3×0.0001 M) concentration., High molar, absorptivity, for the complex solutions w
... Show MoreNew Azo ligands HL1 [2-Hydroxy-3-((5-mercapto-1,3,4-thiadiazol-2-yl)diazenyl)-1-naphth aldehyde] and HL2 [3-((1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)diazenyl)-2-hydroxy-1-naphthaldehyde] have been synthesized from reaction (2-hydroxy-1-naphthaldehyde) and (5-amino-1,3,4-thiadiazole-2-thiol) for HL1 and (4-amino-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one) for HL2. Then, its metal ions complexes are synthesized with the general formula; [CrHL1Cl3(H2O)], [VOHL1(SO4)] [ML1Cl(H2O)] where M = Mn(II), Co(II), Ni(II) and Cu(II), and general formula; [Cr(L2)2 ]Cl and [M(L2)2] where M = VO(II), Mn(II), Co(II), Ni(II) and Cu(II) are reported. The ligands and their metal complexes are characterized by phisco- chemical spectroscopic
... Show More