Computer systems and networks are increasingly used for many types of applications; as a result the security threats to computers and networks have also increased significantly. Traditionally, password user authentication is widely used to authenticate legitimate user, but this method has many loopholes such as password sharing, brute force attack, dictionary attack and more. The aim of this paper is to improve the password authentication method using Probabilistic Neural Networks (PNNs) with three types of distance include Euclidean Distance, Manhattan Distance and Euclidean Squared Distance and four features of keystroke dynamics including Dwell Time (DT), Flight Time (FT), mixture of (DT) and (FT), and finally Up-Up Time (UUT). The results illustrate that Euclidean Squared Distance with (UUT) feature provide low error rate and high accuracy compared with the other two types of distances used.
<abstract><p>Many variations of the algebraic Riccati equation (ARE) have been used to study nonlinear system stability in the control domain in great detail. Taking the quaternion nonsymmetric ARE (QNARE) as a generalized version of ARE, the time-varying QNARE (TQNARE) is introduced. This brings us to the main objective of this work: finding the TQNARE solution. The zeroing neural network (ZNN) technique, which has demonstrated a high degree of effectiveness in handling time-varying problems, is used to do this. Specifically, the TQNARE can be solved using the high order ZNN (HZNN) design, which is a member of the family of ZNN models that correlate to hyperpower iterative techniques. As a result, a novel
... Show MoreInformation about soil consolidation is essential in geotechnical design. Because of the time and expense involved in performing consolidation tests, equations are required to estimate compression index from soil index properties. Although many empirical equations concerning soil properties have been proposed, such equations may not be appropriate for local situations. The aim of this study is to investigate the consolidation and physical properties of the cohesive soil. Artificial Neural Network (ANN) has been adapted in this investigation to predict the compression index and compression ratio using basic index properties. One hundred and ninety five consolidation results for soils tested at different construction sites
... Show MoreNeural stem cells (NSCs) are progenitor cells which have the ability to self‑renewal and potential for differentiating into neurons, oligodendrocytes, and astrocytes. The in vitro isolation, culturing, identification, cryopreservation were investigated to produce neural stem cells in culture as successful sources for further studies before using it for clinical trials. In this study, mouse bone marrow was the source of neural stem cells. The results of morphological study and immunocytochemistry of isolated cells showed that NSCs can be produced successfully and maintaining their self‑renewal and successfully forming neurosphere for multiple passages. The spheres preserved their morphology in culture and cryopreserved t
... Show MoreThis paper includes an experimental study of hydrogen mass flow rate and inlet hydrogen pressure effect on the fuel cell performance. Depending on the experimental results, a model of fuel cell based on artificial neural networks is proposed. A back propagation learning rule with the log-sigmoid activation function is adopted to construct neural networks model. Experimental data resulting from 36 fuel cell tests are used as a learning data. The hydrogen mass flow rate, applied load and inlet hydrogen pressure are inputs to fuel cell model, while the current and voltage are outputs. Proposed model could successfully predict the fuel cell performance in good agreement with actual data. This work is extended to developed fuel cell feedback
... Show MoreAbstract
The research aims to identify the level of effectiveness of the teaching practices of science and mathematics teachers in light of the national framework for future skills in Omani schools. To achieve the objectives of the study, the researchers used the descriptive approach, as he designed a note card consisting of (30) phrases distributed on three axes: basic skills, practical skills, and technical skills. After verifying the validity and reliability of the tools, they were applied to a sample of (116) teachers. The results of the research revealed that the level of effectiveness of the teaching practices of mathematics teachers has recorded a medium degree with a mean (3.05). The results a
... Show MoreContinuous turbidimetric analysis (CTA) for a distinctive analytical application by employing a homemade analyser (NAG Dual & Solo 0-180°) which contained two consecutive detection zones (measuring cells 1 & 2) is described. The analyser works based on light-emitting diodes as a light source and a set of solar cells as a light detector for turbidity measurements without needing further fibres or lenses. Formation of a turbid precipitated product with yellow colour due to the reaction between the warfarin and the precipitation reagent (Potassium dichromate) is what the developed method is based on. The CTA method was applied to determine the warfarin in pure form and pharmaceu
Two homopolymeric and three copolymeric additives for base oil were synthesized using octyl acrylate (OA) and tert-butyl acrylamide (TBA) monomers. The two additives named P1 and P2 are the homopolymers of TBA and OA, respectively, whereas copolymeric additives named Co1, Co2, and Co3 were synthesized by varying the ratios of TBA:OA as 1:3, 3:1 and 1:1, respectively. The prepared polymers were characterized by Fourier Transform Infrared (FTIR). Based on the solubility of synthesized polymers in base oil and reactivity ratios of TBA/OA copolymer (0.222, 0.434) calculated by Fineman-Ross method, P2, Co1, Co2 and Co3 were selected to evaluate their performance as pour point depressant (PPD), viscosity improver (VII), and anticorrosion addit
... Show MoreThe performance of sewage pumps stations affected by many factors through its work time which produce undesired transportation efficiency. This paper is focus on the use of artificial neural network and multiple linear regression (MLR) models for prediction the major sewage pump station in Baghdad city. The data used in this work were obtained from Al-Habibia sewage pump station during specified records- three years in Al-Karkh district, Baghdad. Pumping capability of the stations was recognized by considering the influent input importance of discharge, total suspended solids (TSS) and biological oxygen demand (BOD). In addition, the chemical oxygen demands (COD), pH and chloride (Cl). The proposed model performanc
... Show More