Computer systems and networks are increasingly used for many types of applications; as a result the security threats to computers and networks have also increased significantly. Traditionally, password user authentication is widely used to authenticate legitimate user, but this method has many loopholes such as password sharing, brute force attack, dictionary attack and more. The aim of this paper is to improve the password authentication method using Probabilistic Neural Networks (PNNs) with three types of distance include Euclidean Distance, Manhattan Distance and Euclidean Squared Distance and four features of keystroke dynamics including Dwell Time (DT), Flight Time (FT), mixture of (DT) and (FT), and finally Up-Up Time (UUT). The results illustrate that Euclidean Squared Distance with (UUT) feature provide low error rate and high accuracy compared with the other two types of distances used.
The pilgrimage takes place in several countries around the world. The pilgrimage includes the simultaneous movement of a huge crowd of pilgrims which leads to many challenges for the pilgrimage authorities to track, monitor, and manage the crowd to minimize the chance of overcrowding’s accidents. Therefore, there is a need for an efficient monitoring and tracking system for pilgrims. This paper proposes powerful pilgrims tracking and monitoring system based on three Internet of Things (IoT) technologies; namely: Radio Frequency Identification (RFID), ZigBee, and Internet Protocol version 6 (IPv6). In addition, it requires low-cost, low-power-consumption implementation. The proposed
Skull image separation is one of the initial procedures used to detect brain abnormalities. In an MRI image of the brain, this process involves distinguishing the tissue that makes up the brain from the tissue that does not make up the brain. Even for experienced radiologists, separating the brain from the skull is a difficult task, and the accuracy of the results can vary quite a little from one individual to the next. Therefore, skull stripping in brain magnetic resonance volume has become increasingly popular due to the requirement for a dependable, accurate, and thorough method for processing brain datasets. Furthermore, skull stripping must be performed accurately for neuroimaging diagnostic systems since neither no
... Show MoreDust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system
... Show MoreThe current research aims to build a training program for chemistry teachers based on the knowledge economy and its impact on the productive thinking of their students. To achieve the objectives of the research, the following hypothesis was formulated:
There is no statistically significant difference at (0.05) level of significance between the average grades of the students participating in the training program according to the knowledge economy and the average grades of the students who did not participate in the training program in the test of productive thinking. The study sample consisted of (288) second intermediate grade students divided into (152) for the control group
... Show MoreThis study examines the vibrations produced by hydropower operations to improve embankment dam safety. This study consists of two parts: In the first part, ANSYS-CFX was used to generate a three-dimensional (3-D) finite volume (FV) model to simulate a vertical Francis turbine unit in the Mosul hydropower plant. The pressure pattern result of the turbine model was transformed into the dam body to show how the turbine unit's operation affects the dam's stability. The upstream reservoir conditions, various flow rates, and fully open inlet gates were considered. In the second part of this study, a 3-D FE Mosul dam model was simulated using an ANSYS program. The operational turbine model's water pressure pattern is conveyed t
... Show MoreThe software-defined network (SDN) is a new technology that separates the control plane from data plane for the network devices. One of the most significant issues in the video surveillance system is the link failure. When the path failure occurs, the monitoring center cannot receive the video from the cameras. In this paper, two methods are proposed to solve this problem. The first method uses the Dijkstra algorithm to re-find the path at the source node switch. The second method uses the Dijkstra algorithm to re-find the path at the ingress node switch (or failed link).
... Show MoreThe Electrical power system has become vast and more complex, so it is subjected to sudden changes in load levels. Stability is an important concept which determines the stable operation of the power system. Transient stability analysis has become one of the significant studies in the power system to ensure the system stability to withstand a considerable disturbance. The effect of temporary occurrence can lead to malfunction of electronic control equipment. The application of flexible AC transmission systems (FACTS) devices in the transmission system have introduced several changes in the power system. These changes have a significant impact on the power system protection, due to differences inline impedance, line curre
... Show MoreArcHydro is a model developed for building hydrologic information systems to synthesize geospatial and temporal water resources data that support hydrologic modeling and analysis. Raster-based digital elevation models (DEMs) play an important role in distributed hydrologic modeling supported by geographic information systems (GIS). Digital Elevation Model (DEM) data have been used to derive hydrological features, which serve as inputs to various models. Currently, elevation data are available from several major sources and at different spatial resolutions. Detailed delineation of drainage networks is the first step for many natural resource management studies. Compared with interpretation from aerial photographs or topographic maps, auto
... Show More