Among a variety of approaches introduced in the literature to establish duality theory, Fenchel duality was of great importance in convex analysis and optimization. In this paper we establish some conditions to obtain classical strong Fenchel duality for evenly convex optimization problems defined in infinite dimensional spaces. The objective function of the primal problem is a family of (possible) infinite even convex functions. The strong duality conditions we present are based on the consideration of the epigraphs of the c-conjugate of the dual objective functions and the ε-c-subdifferential of the primal objective functions.
In this work, we prove that the triple linear partial differential equations (PDEs) of elliptic type (TLEPDEs) with a given classical continuous boundary control vector (CCBCVr) has a unique "state" solution vector (SSV) by utilizing the Galerkin's method (GME). Also, we prove the existence of a classical continuous boundary optimal control vector (CCBOCVr) ruled by the TLEPDEs. We study the existence solution for the triple adjoint equations (TAJEs) related with the triple state equations (TSEs). The Fréchet derivative (FDe) for the objective function is derived. At the end we prove the necessary "conditions" theorem (NCTh) for optimality for the problem.
In the field of construction project management, time and cost are the most important factors to be considered in planning every project, and their relationship is complex. The total cost for each project is the sum of the direct and indirect cost. Direct cost commonly represents labor, materials, equipment, etc.
Indirect cost generally represents overhead cost such as supervision, administration, consultants, and interests. Direct cost grows at an increasing rate as the project time is reduced from its original planned time. However, indirect cost continues for the life of the project and any reduction in project time means a reduction in indirect cost. Therefore, there is a trade-off between the time and cost for completing construc
The aim of this article, we define new iterative methods called three-step type in which Jungck resolvent CR-iteration and resolvent Jungck SP-iteration are discussed and study rate convergence and strong convergence in Banach space to reach the fixed point which is differentially solve of nonlinear equations. The studies also expanded around it to find the best solution for nonlinear operator equations in addition to the varying inequalities in Hilbert spaces and Banach spaces, as well as the use of these iterative methods to approximate the difference between algorithms and their images, where we examined the necessary conditions that guarantee the unity and existence of the solid point. Finally, the results show that resolvent CR-iter
... Show MoreOptimization is the task of minimizing or maximizing an objective function f(x) parameterized by x. A series of effective numerical optimization methods have become popular for improving the performance and efficiency of other methods characterized by high-quality solutions and high convergence speed. In recent years, there are a lot of interest in hybrid metaheuristics, where more than one method is ideally combined into one new method that has the ability to solve many problems rapidly and efficiently. The basic concept of the proposed method is based on the addition of the acceleration part of the Gravity Search Algorithm (GSA) model in the Firefly Algorithm (FA) model and creating new individuals. Some stan
... Show MoreExtractive multi-document text summarization – a summarization with the aim of removing redundant information in a document collection while preserving its salient sentences – has recently enjoyed a large interest in proposing automatic models. This paper proposes an extractive multi-document text summarization model based on genetic algorithm (GA). First, the problem is modeled as a discrete optimization problem and a specific fitness function is designed to effectively cope with the proposed model. Then, a binary-encoded representation together with a heuristic mutation and a local repair operators are proposed to characterize the adopted GA. Experiments are applied to ten topics from Document Understanding Conference DUC2002 datas
... Show MoreTo ensure that a software/hardware product is of sufficient quality and functionality, it is essential to conduct thorough testing and evaluations of the numerous individual software components that make up the application. Many different approaches exist for testing software, including combinatorial testing and covering arrays. Because of the difficulty of dealing with difficulties like a two-way combinatorial explosion, this brings up yet another problem: time. Using client-server architectures, this research introduces a parallel implementation of the TWGH algorithm. Many studies have been conducted to demonstrate the efficiency of this technique. The findings of this experiment were used to determine the increase in speed and co
... Show MoreThe application of the test case prioritization method is a key part of system testing intended to think it through and sort out the issues early in the development stage. Traditional prioritization techniques frequently fail to take into account the complexities of big-scale test suites, growing systems and time constraints, therefore cannot fully fix this problem. The proposed study here will deal with a meta-heuristic hybrid method that focuses on addressing the challenges of the modern time. The strategy utilizes genetic algorithms alongside a black hole as a means to create a smooth tradeoff between exploring numerous possibilities and exploiting the best one. The proposed hybrid algorithm of genetic black hole (HGBH) uses the
... Show MoreIncreased downscaling of CMOS circuits with respect to feature size and threshold voltage has a result of dramatically increasing in leakage current. So, leakage power reduction is an important design issue for active and standby modes as long as the technology scaling increased. In this paper, a simultaneous active and standby energy optimization methodology is proposed for 22 nm sub-threshold CMOS circuits. In the first phase, we investigate the dual threshold voltage design for active energy per cycle minimization. A slack based genetic algorithm is proposed to find the optimal reverse body bias assignment to set of noncritical paths gates to ensure low active energy per cycle with the maximum allowable frequency at the optimal supply vo
... Show More