Among a variety of approaches introduced in the literature to establish duality theory, Fenchel duality was of great importance in convex analysis and optimization. In this paper we establish some conditions to obtain classical strong Fenchel duality for evenly convex optimization problems defined in infinite dimensional spaces. The objective function of the primal problem is a family of (possible) infinite even convex functions. The strong duality conditions we present are based on the consideration of the epigraphs of the c-conjugate of the dual objective functions and the ε-c-subdifferential of the primal objective functions.
The aim of human lower limb rehabilitation robot is to regain the ability of motion and to strengthen the weak muscles. This paper proposes the design of a force-position control for a four Degree Of Freedom (4-DOF) lower limb wearable rehabilitation robot. This robot consists of a hip, knee and ankle joints to enable the patient for motion and turn in both directions. The joints are actuated by Pneumatic Muscles Actuators (PMAs). The PMAs have very great potential in medical applications because the similarity to biological muscles. Force-Position control incorporating a Takagi-Sugeno-Kang- three- Proportional-Derivative like Fuzzy Logic (TSK-3-PD) Controllers for position control and three-Proportional (3-P) controllers for force contr
... Show MoreThis study proposed control system that has been presented to control the electron lens resistance in order to obtain a stabilized electron lens power. This study will layout the fundamental challenges, hypothetical plan arrangements and development condition for the Integrable Optics Test Accelerator (IOTA) in progress at Fermilab. Thus, an effective automatic gain control (AGC) unit has been introduced which prevents fluctuations in the internal resistance of the electronic lens caused by environmental influences to affect the system's current and power values and keep them in stable amounts. Utilizing this unit has obtained level balanced out system un impacted with electronic lens surrounding natural varieties.
The majority of real-world problems involve not only finding the optimal solution, but also this solution must satisfy one or more constraints. Differential evolution (DE) algorithm with constraints handling has been proposed to solve one of the most fundamental problems in cellular network design. This proposed method has been applied to solve the radio network planning (RNP) in the forthcoming 5G Long Term Evolution (5G LTE) wireless cellular network, that satisfies both deployment cost and energy savings by reducing the number of deployed micro base stations (BSs) in an area of interest. Practically, this has been implemented using constrained strategy that must guarantee good coverage for the users as well. Three differential evolution
... Show MoreThis paper discusses an optimal path planning algorithm based on an Adaptive Multi-Objective Particle Swarm Optimization Algorithm (AMOPSO) for two case studies. First case, single robot wants to reach a goal in the static environment that contain two obstacles and two danger source. The second one, is improving the ability for five robots to reach the shortest way. The proposed algorithm solves the optimization problems for the first case by finding the minimum distance from initial to goal position and also ensuring that the generated path has a maximum distance from the danger zones. And for the second case, finding the shortest path for every robot and without any collision between them with the shortest time. In ord
... Show MoreA spectrophotometric determination of azithromycin was optimized using the simplex model. The approach has been proven to be accurate and sensitive. The analyte has been reacted with bromothymol blue (BTB) to form a colored ion pair which has been extracted in chloroform in a buffer medium of pH=4 of potassium phthalate. The extracted colored product was assayed at 415 nm and exhibited a linear quantification range over (1 - 20) g/ml. The excipients did not exhibit any interferences with the proposed approach for assaying azithromycin in pharmaceutical formulations.
In the present article, we implement the new iterative method proposed by Daftardar-Gejji and Jafari (NIM) [V. Daftardar-Gejji, H. Jafari, An iterative method for solving nonlinear functional equations, J. Math. Anal. Appl. 316 (2006) 753-763] to solve two problems; the first one is the problem of spread of a non-fatal disease in a population which is assumed to have constant size over the period of the epidemic, and the other one is the problem of the prey and predator. The results demonstrate that the method has many merits such as being derivative-free, overcome the difficulty arising in calculating Adomian polynomials to handle the nonlinear terms in Adomian Decomposition Method (ADM), does not require to calculate Lagrange multiplier a
... Show MoreCurrent search aims to identify the creative thinking of the kindergarten teachers and
solving professional problems among kindergarten teachers skills, and whether the level of
creative thinking in solving professional problems, according on marital status years of
service academic achievement of teachers as well as to identify the correlation between the
two variables the current sample consisted of (300) teachers to achieve the objectives of the
stndy , the researcher used two measures, one to measure creative thinking and the other to
measure the solution to the problems of professional kindergarten teachers skills. It has been
shown. validity and reliability of the two measures. The present stndy aims to identif
Optimization is essentially the art, science and mathematics of choosing the best among a given set of finite or infinite alternatives. Though currently optimization is an interdisciplinary subject cutting through the boundaries of mathematics, economics, engineering, natural sciences, and many other fields of human Endeavour it had its root in antiquity. In modern day language the problem mathematically is as follows - Among all closed curves of a given length find the one that closes maximum area. This is called the Isoperimetric problem. This problem is now mentioned in a regular fashion in any course in the Calculus of Variations. However, most problems of antiquity came from geometry and since there were no general methods to solve suc
... Show More