<span>As a result of numerous applications and low installation costs, wireless sensor networks (WSNs) have expanded excessively. The main concern in the WSN environment is to lower energy consumption amidst nodes while preserving an acceptable level of service quality. Using multi-mobile sinks to reduce the nodes' energy consumption have been considered as an efficient strategy. In such networks, the dynamic network topology created by the sinks mobility makes it a challenging task to deliver the data to the sinks. Thus, in order to provide efficient data dissemination, the sensor nodes will have to readjust the routes to the current position of the mobile sinks. The route re-adjustment process could result in a significant maximization in the communication cost, which boosts the total energy depletion. This paper proposes a lightweight routes re-adjustment strategy for mobile sink wireless sensor networks (LRAS-MS) aimed at minimizing communication cost and energy consumption by reducing route re-adjustment in a cluster-based WSN environment. The simulation results show a significant reduction in communication costs and extending the network lifetime while maintaining comparable low data delivery delay. </span>
This paper presents a cognition path planning with control algorithm design for a nonholonomic wheeled mobile robot based on Particle Swarm Optimization (PSO) algorithm. The aim of this work is to propose the circular roadmap (CRM) method to plan and generate optimal path with free navigation as well as to propose a nonlinear MIMO-PID-MENN controller in order to track the wheeled mobile robot on the reference path. The PSO is used to find an online tune the control parameters of the proposed controller to get the best torques actions for the wheeled mobile robot. The numerical simulation results based on the Matlab package show that the proposed structure has a precise and highly accurate distance of the generated refere
... Show MoreResearch in consumer science has proven that grocery shopping is a complex and distressing process. Further, the task of generating the grocery lists for the grocery shopping is always undervalued as the effort and time took to create and manage the grocery lists are unseen and unrecognized. Even though grocery lists represent consumers’ purchase intention, research pertaining the grocery lists does not get much attention from researchers; therefore, limited studies about the topic are found in the literature. Hence, this study aims at bridging the gap by designing and developing a mobile app (application) for creating and managing grocery lists using modern smartphones. Smartphones are pervasive and become a necessity for everyone tod
... Show MoreIdentification of complex communities in biological networks is a critical and ongoing challenge since lots of network-related problems correspond to the subgraph isomorphism problem known in the literature as NP-hard. Several optimization algorithms have been dedicated and applied to solve this problem. The main challenge regarding the application of optimization algorithms, specifically to handle large-scale complex networks, is their relatively long execution time. Thus, this paper proposes a parallel extension of the PSO algorithm to detect communities in complex biological networks. The main contribution of this study is summarized in three- fold; Firstly, a modified PSO algorithm with a local search operator is proposed
... Show MoreDiscriminant between groups is one of the common procedures because of its ability to analyze many practical phenomena, and there are several methods can be used for this purpose, such as linear and quadratic discriminant functions. recently, neural networks is used as a tool to distinguish between groups.
In this paper the simulation is used to compare neural networks and classical method for classify observations to group that is belong to, in case of some variables that don’t follow the normal distribution. we use the proportion of number of misclassification observations to the all observations as a criterion of comparison.
Gas and downhole water sink-assisted gravity drainage (GDWS-AGD) is a new process of enhanced oil recovery (EOR) in oil reservoirs underlain by large bottom aquifers. The process is capital intensive as it requires the construction of dual-completed wells for oil production and water drainage and additional multiple vertical gas-injection wells. The costs could be substantially reduced by eliminating the gas-injection wells and using triple-completed multi-functional wells. These wells are dubbed triple-completion-GDWS-AGD (TC-GDWS-AGD). In this work, we design and optimize the TC-GDWS-AGD oil recovery process in a fictitious oil reservoir (Punq-S3) that emulates a real North Sea oil field. The design aims at maximum oil recovery us
... Show MoreA hybrid Gas-Enhanced and Downhole Water Sink-Assisted Gravity Drainage (GDWS-AGD) process has been suggested to enhance oil recovery by placing vertical injectors for CO2 at the top of the reservoir with a series of horizontal oil-producing and water-drainage wells located above and below the oil-water contact, respectively. The injected gas builds a gas cap that drives the oil to the (upper) oil-producing wells while the bottom water-drainage wells control water cresting. The hybrid process of GDWS-AGD process has been first developed and tested in vertical wells to minimize water cut in reservoirs with bottom water drive and strong water coning tendencies. The wells were dual-compl