BACKGROUND: Montelukast (Singulair) is a cysteinyl leukotriene receptor antagonist, used for the maintenance treatment of asthma and to relieve symptoms of seasonal allergic rhinitis and asthma, also used for exercise-induced bronchospasm. AIM: This study was performed to determine the prevalence of Montelukast use as an add-on therapy among Iraqi asthmatic patients on treatment. Comparing the effectiveness of regimens with and without montelukast. METHODS: This descriptive cross-sectional study was carried out on 73 Iraqi asthmatic patients on treatment of both sexes with age range (18-60) years old, attending Al-Kindy Teaching Hospital and Al-Zahraa Centre of Asthma and Allergy, Baghdad, for the period between February and March 2017. A questionnaire was specifically prepared to meet the objectives and was used to collect the data of the study. RESULTS: There was a significant statistical reduction of frequency in asthmatic attacks after Montelukast treatment (p-value < 0.05). Out of 73 patients, 39 were males, and 34 were females, 46 were jobless, 37 were married, 63 were urban residents, 63 were educated. Prevalence of exacerbation factors was as following: infection was found in 60.3% of the patients, exercise in 57.5%, dust in 72.6%, smoking in 60.6%, food in 24.7%, others (stress, perfumes) in 20.5%. The prevalence of Montelukast use in this study was 46% (34 patients). Out of 34 patients using Montelukast, 28 were using inhaled salbutamol, 5 were using oral salbutamol, 15 were using inhaled corticosteroids, 9 were using systematic corticosteroids, 2 were using xanthines, and 6 were using ketotifen. CONCLUSION: Montelukast was used as add-on therapy with the inhaled corticosteroids to reduce the required dose of inhaled corticosteroids also the use of Montelukast lead to reduced number of exacerbations which will be reflected on the use of inhaled salbutamol and systematic corticosteroids. Also, Montelukast was superior to xanthines and ketotifen as an add-on therapy.
In this study, the sonochemical degradation of phenol in water was investigated using two types of ultrasonic wave generators; 20 kHz ultrasonic processor and 40 kHz ultrasonic cleaner bath. Mineralization rates were determined as a function of phenol concentration, contact time, pH, power density, and type of ultrasonic generator. Results revealed that sonochemical degradation of the phenol conversion was enhanced at increased applied power densities and acidic conditions. At 10 mg/L initial concentration of phenol, pH 7, and applied power density of 3000 W/L, the maximum removal efficiency of phenol was 93% using ultrasonic processor at 2h contact time. Whereby, it was 87% using and ultrasonic cleaner bath at 16h contact time and 150 W
... Show MoreIn the present work is the deposition of copper oxide using the pulsed laser deposition technique using Reactive Pulsed Laser as a Deposition technique (RPLD), 1.064μm, 7 nsec Q-switch Nd-YAG laser with 400 mJ/cm2 laser energy’s has been used to ablated high purity cupper target and deposited on the porous silicon substrates recorded and study the effect of rapid thermal annealing on the structural characteristics, morphological, electrical characteristics and properties of the solar cell. Results of AFM likelihood of improved absorption, thereby reducing the reflection compared with crystalline silicon surface. The results showed the characteristics of the solar cell and a clear improvement in the efficiency of the solar cell in the
... Show MoreIncreasing hydrocarbon recovery from tight reservoirs is an essential goal of oil industry in the recent years. Building real dynamic simulation models and selecting and designing suitable development strategies for such reservoirs need basically to construct accurate structural static model construction. The uncertainties in building 3-D reservoir models are a real challenge for such micro to nano pore scale structure. Based on data from 24 wells distributed throughout the Sadi tight formation. An application of building a 3-D static model for a tight limestone oil reservoir in Iraq is presented in this study. The most common uncertainties confronted while building the model were illustrated. Such as accurate estimations of cut-off
... Show MoreTo evaluate and improve the efficiency of photovoltaic solar modules connected with linear pipes for water supply, a three-dimensional numerical simulation is created and simulated via commercial software (Ansys-Fluent). The optimization utilizes the principles of the 1st and 2nd laws of thermodynamics by employing the Response Surface Method (RSM). Various design parameters, including the coolant inlet velocity, tube diameter, panel dimensions, and solar radiation intensity, are systematically varied to investigate their impacts on energetic and exergitic efficiencies and destroyed exergy. The relationship between the design parameters and the system responses is validated through the development of a predictive model. Both single and mult
... Show MoreThe characteristics of sulfur nanoparticles were studied by using atomic force microscope (AFM) analysis. The atomic force microscope (AFM) measurements showed that the average size of sulfur nanoparticles synthesized using thiosulfate sodium solution through the extract of cucurbita pepo extra was 93.62 nm. Protecting galvanized steel from corrosion in salt media was achieved by using sulfur nanoparticles in different temperatures. The obtained data of thermodynamic in the presence of sulfur nanoparticles referred to high value as compares to counterpart in the absence of sulfur nanoparticles, the high inhibition efficiency (%IE) and corrosion resistance were at high temperature, the corrosion rate or weig
... Show MoreFlexure members such as reinforced concrete (RC) simply supported beams subjected to two-point loading were analyzed numerically. The Extended Finite Element Method (XFEM) was employed for the treatment the non-smooth h behaviour such as discontinuities and singularities. This method is a powerful technique used for the analysis of the fracture process and crack propagation in concrete. Concrete is a heterogeneous material that consists of coarse aggregate, cement mortar and air voids distributed in the cement paste. Numerical modeling of concrete comprises a two-scale model, using mesoscale and macroscale numerical models. The effectiveness and validity of the Meso-Scale Approach (MSA) in modeling of the reinforced concrete beams w
... Show More