Mixed ligand metal complexes of CrIII, FeIII,II, NiII and CuII have been synthesized using 5-chlorosalicylic acid (5-CSA) as a primary ligand and L-Valine (L-Val) as secondary ligand. The metal complexes have been characterized by elemental analysis, electrical conductance, magnetic susceptibility measurements and spectral studies. The electrical conductance studies of the complexes indicate their electrolytic nature. Magnetic susceptibility measurements revealed paramagnetic nature of the all complexes. Bonding of the metal ion through –OHand –COOgroups of bidentate to the 5-chlorosalicylic acid and through –NH2 and –COOgroups of bidentate to the L-valine by FT-IR studies . The agar diffusion method has been used to study the antibacterial activity of the ligands and complexes against the pathogenic bacteria E.Coli, Pseudomonas, Bacillus and Staphylococcus
The present paper describes the synthesis and structural studies of new transition metal complexes of cobalt(II), nickel(II), copper(II) and cadmium(II) with two bi dentate ligands derived from quinoxaline-2,3-dione. The two ligands were fully identified by elemental analyses, FT-IR, NMR and UV-Visible spectra. The metal complexes of Co(II), Ni(II), Cu(II) and Cd(II) were isolated in the solid state after reactions of their metal chlorides with the ligands in 2:1 mole ratio. The isolated solid metal complexes were characterized with the help of elemental analyses, NMR, FT-IR and UV-Visible spectra. As well as the thermal stability of the coordinated quinoxaline polymers were tested by TG-DSC analysis and it is found th
... Show Moreالصيغة العامة للمعقدات الجديدة [M2(BDS)Cl4] الناتجة من تفاعل الليكاند الجديد] ن1,ن4-ثنائي(1أ –بنزو]د[ اميدازول-2-يل)-ن1,ن4-ثنائي(4-ثنائي مثيل امينو) بنزيل) سكسنمايد[ (BDS) مع الايونات الفلزية الكادميوم, الكوبلت, الزئبق, النحاس والنيكل. تم اشتقاق هذا الليكاند من تفاعل المواد الثلاث 4-(ثنائي ميثيل أمينو) بنزالدهيد، 2-أمينو بنزيميدازول، وكلوريد السكسينيل. تم تشخيص المركبات باستخدام مطيافية طيف الاشعة تحت الحمراء وطيف الرن
... Show More
Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of
... Show MoreThis study describes the preparation of a new bidentate Schiff base derived from the condensation of Isatin-3-hydrazone with 2-acetylthiophene and the preparation of new series of complexes with a good yield. The prepared ligand was characterized by IR, UV-Vis, C.H.N.S elemental analysis, 1H and 13C NMR, LC-Mass spectroscopy, and physical measurements. Its complexes were analyzed by C.H.N.S elemental analyses, UV-Vis., FTIR, NMR, LC-Mass Spectra, atomic absorption spectroscopy, magnetic susceptibility, and conductivity measurements The results from spectroscopy and measurement studies showed that the ligand coordinated to the metal ion as a bidentate ligand via oxygen and nitrogen, forming an octahedral geometry around it. In vitro antimicr
... Show MorePolyimide/MWCNTs nanocomposites have been fabricated by solution mixing process. In the present study, we have investigated electrical conductivity and dielectric properties of PI/MWCNT nanocomposites in frequency range of 1 kHz to 100 kHz at different MWCNTs concentrations from 0 wt.% to 15 wt.%. It has been observed that the electrical conductivity and dielectric constants are enhanced significantly by several orders of magnitude up to 15 wt.% of MWCNTs content. The electrical conductivity increases as the frequency is increased, which can be attributed to high dislocation density near the interface. The rapid increase in the dielectric constant at a high MWCNTs content can be explained by the form
Zinc Oxide (ZnO) is probably the most typical II-VI
semiconductor, which exhibits a wide range of nanostructures. In
this paper, polycrystalline ZnO thin films were prepared by chemical
spray pyrolysis technique, the films were deposited onto glass
substrate at 400 °C by using aqueous zinc chloride as a spray
solution of molar concentration of 0.1 M/L.
The crystallographic structure of the prepared film was analyzed
using X-ray diffraction; the result shows that the film was
polycrystalline, the grain size which was calculated at (002) was
27.9 nm. The Hall measurement of the film studied from the
electrical measurements show that the film was n-type. The optical
properties of the film were studied using
oupling reaction of 4-aminoantipyrene with the (L-Histidine) gave the new bidentate azo ligand.The prepared ligand was identified by FT.IR, UV-Vis and HNMR spectroscopics technique. Treatment of the prepared ligand was done with the following metal ions (Ag+ ,Pb+2 ,Fe+3 ,Cr+3 ) in aqueous ethanol with a1:1 and 1:2 M:L ratio . The prepared complexes were characterized by using FT. IR and UV- VIS spectroscopic method as well as conductivity measurements. Their structures were suggested according to the results obtained.
The biosorption of lead (II) and chromium (III) onto dead anaerobic biomass (DAB) in single and binary systems has been studied using fixed bed adsorber. A general rate multi- component model (GRM) has been utilized to predict the fixed bed breakthrough curves for single and dual- component system. This model considers both external and internal mass transfer resistances as well as axial dispersion with non-liner multi-component isotherm (Langmuir model). The effects of important parameters, such as flow rate, initial concentration and bed height on the behavior of breakthrough curves have been studied. The equilibrium isotherm model parameters such as maximum uptake capacities for lead (II) and chromium (III) were found to be 35.12 and
... Show More