As the reservoir conditions are in continuous changing during its life, well production rateand its performance will change and it needs to re-model according to the current situationsand to keep the production rate as high as possible.Well productivity is affected by changing in reservoir pressure, water cut, tubing size andwellhead pressure. For electrical submersible pump (ESP), it will also affected by numberof stages and operating frequency.In general, the production rate increases when reservoir pressure increases and/or water cutdecreases. Also the flow rate increase when tubing size increases and/or wellhead pressuredecreases. For ESP well, production rate increases when number of stages is increasedand/or pump frequency is increased.In this study, a nodal analysis software was used to design one well with natural flow andother with ESP. Reservoir, fluid and well information are taken from actual data of Mishrifformation-Nasriya oil field/ NS-5 well. Well design steps and data required in the modelwill be displayed and the optimization sensitivity keys will be applied on the model todetermine the effect of each individual parameter or when it combined with another one.
The importance of kick tolerance in well operations has recently increased due to its implications in well design, in drilling and well control. To study a simple method for the application of kick tolerance concept in an effective way on the basis of field data, this research purpose is to improve knowledge about Kick Tolerance and represents a technical basis for the discussion on revision of standard procedure. The objective of this work is to review and to present a methodology of determination the kick tolerance parameters using the circulation kicks tolerance concepts. The proposed method allows to know, to evaluate and to analyze the kick tolerance problem in order to make the drilling execution safer and more economical by reducin
... Show MoreThe importance of kick tolerance in well operations has recently increased due to its implications in well design, in drilling and well control. To study a simple method for the application of kick tolerance concept in an effective way on the basis of field data, this research purpose is to improve knowledge about Kick Tolerance and represents a technical basis for the discussion on revision of standard procedure.
The objective of this work is to review and to present a methodology of determination the kick tolerance parameters using the circulation kicks tolerance concepts.
The proposed method allows to know, to evaluate and to analyze the kick tolerance problem in order to make the drilling exe
... Show MoreThis research was aimed to determine the petrophysical properties (porosity, permeability and fluid saturation) of a reservoir. Petrophysical properties of the Shuiaba Formation at Y field are determined from the interpretation of open hole log data of six wells. Depending on these properties, it is possible to divide the Shuiaba Formation which has thickness of a proximately 180-195m, into three lithological units: A is upper unit (thickness about 8 to 15 m) involving of moderately dolomitized limestones; B is a middle unit (thickness about 52 to 56 m) which is composed of dolomitic limestone, and C is lower unit ( >110 m thick) which consists of shale-rich and dolomitic limestones. The results showed that the average formation water
... Show MoreIn this study, the effect of design parameters such as pipe diameter, pipe wall thickness, pipe material and the effect of fluid velocity on the natural frequency of fluid-structure interaction in straight pipe conveying fully developed turbulent flow were investigate numerically,analytically and experimentally. Also the effect of support conditions, simply-simply and clamped-clamped was investigated. Experimentally, pipe vibrations were characterized by accelerometer mounted on the pipe wall. The natural frequencies of vibration were analyzed by using Fast Fourier Transformer (FFT). Five test sections of two different pipe diameters of 76.2
mm and 50.8 mm with two pipe thicknesses of 3.7 mm and 2.4 mm and two pipe materials,stainles
An overall mathematical model for copper pipe corrosion in flowing water was derived based on mass transfer fundamentals where we introduced the effects of boundary layer velocity, bulk flow velocity and the surface oxide protective film on the corrosion rate. A set of experiments were conducted in a straight 10mm diameter copper pipe, flow of water include six velocities of maximum value 7.33m/sec at 200C and 350C. The good agreement between the calculated and experimental corrosion rate values were achieved , the agreement reached 92% .
A numerical computation for determination transmission coefficient and resonant tunneling energies of multibarriers heterostructure has been investigated. Also, we have considered GaN/Al0.3Ga0.7N superlattice system to estimate the probability of resonance at specific energy values, which are less than the potential barrier height. The transmission coefficient is determined by using the transfer matrix method and accordingly the resonant energies are obtained from the T(E) relation. The effects of both well width and number of barriers (N) are observed and discussed. The numbers of resonant tunneling peaks are generally increasing and they become sharper with the increasing of N. The resonant tunneling levels are shifted inside the well by
... Show MoreA numerical computation for determination transmission coefficient and resonant tunneling energies of multibarriers heterostructure has been investigated. Also, we have considered GaN/Al0.3Ga0.7N superlattice system to estimate the probability of resonance at specific energy values, which are less than the potential barrier height. The transmission coefficient is determined by using the transfer matrix method and accordingly the resonant energies are obtained from the T(E) relation. The effects of both well width and number of barriers (N) are observed and discussed. The numbers of resonant tunneling peaks are generally increasing and they become sharper with the increasing of N. The resonant tunneling levels are sh
... Show MoreThe Aaliji Formation in wells (BH.52, BH.90, BH.138, and BH.188) in Bai Hassan Oil Field in Low Folded Zone northern Iraq has been studied to recognize the palaeoenvironment and sequence stratigraphic development. The formation is bounded unconformably with the underlain Shiranish Formation and the overlain Jaddala Formation. The microfacies analysis and the nature of accumulation of both planktonic and benthonic foraminifera indicate the two microfacies associations; where the first one represents deep shelf environment, which is responsible for the deposition of the Planktonic Foraminiferal Lime Wackestone Microfacies and Planktonic Foraminiferal Lime Packstone Microfacies, while the second association represents the deep-sea environme
... Show MoreMolasse medium containing different concentrations of (NH4)2 SO4, (NH4)3 PO4, urea, KCI, and P2O5 were compared with the medium used for commercial production of C. utilis in a factory south of Iraq. An efficient medium, which produced 19. 16% dry wt. and 5. 78% protein, was developed. The effect of adding various concentrations of micronutrients (FeSO4, 7T20, MnSO4. 7H20, ZnSO4. 7E20) was also studied. Results showed that FeSo4. 7H20 caused a noticeable increase in both dry wt. and protein content of the yeast.
Abstract
Objectives: The main objective of this study is to find the influence level of nursing incivility on psychological well-being among nurses in southeastern Iraq.
Methods: In this descriptive correlational study, a convenience sample of 250 nurses working in three government hospitals in Missan province in the south of Iraq were surveyed using the nursing incivility scale (NIS) and Ryff's psychological well-being scale (PWB) from November 2021, to July 2022. A multivariate multiple regression analysis was done to analyze the multivariate effect of workplace incivility on the psychological well-being of nurses.
Results: The study results show a
... Show More