Preferred Language
Articles
/
2Bi_spQBVTCNdQwCEx64
Using <scp>5G</scp> Standards for Smart Healthcare Applications and Designing an Artificial Intelligence‐Based Industry 4.0 Communication System
...Show More Authors
ABSTRACT<p>The introduction of Industry 4.0, to improve Internet of Things (IoT) standards, has sparked the creation of 5G, or highly sophisticated wireless networks. There are several barriers standing in the way of 5G green communication systems satisfying the expectations for faster networks, more user capacity, lower resource consumption, and cost‐effectiveness. 5G standards implementation would speed up data transmission and increase the reliability of connected devices for Industry 4.0 applications. The demand for intelligent healthcare systems has increased globally as a result of the introduction of the novel COVID‐19. Designing 5G communication systems presents research problems such as optimizing resource usage, managing mobility, ensuring cost‐efficiency, managing interference, and maximizing spectral efficiency. The fast advancement of artificial intelligence (AI) in several domains yields improved performance in contrast to traditional methods. Hence, including AI in 5G standards would enhance performance by catering to diverse end‐user applications. Initially, we provide an overview of concepts such as Industry 4.0, the 5G standard, and recent developments in the sphere of wireless communications in the future. The goal is to use 5G technology to look at current research problems. We present a new architecture for Industry 4.0 and 5G‐compliant smart healthcare systems. We develop and run the proposed model to investigate the current 5G methods using the Network Simulator (NS2). The results of the simulation show that 5G resource management and interference management approaches already in use face challenges including performance trade‐offs.</p>
Scopus Clarivate Crossref
Publication Date
Tue Nov 01 2022
Journal Name
2022 International Conference On Data Science And Intelligent Computing (icdsic)
An improved Bi-LSTM performance using Dt-WE for implicit aspect extraction
...Show More Authors

In aspect-based sentiment analysis ABSA, implicit aspects extraction is a fine-grained task aim for extracting the hidden aspect in the in-context meaning of the online reviews. Previous methods have shown that handcrafted rules interpolated in neural network architecture are a promising method for this task. In this work, we reduced the needs for the crafted rules that wastefully must be articulated for the new training domains or text data, instead proposing a new architecture relied on the multi-label neural learning. The key idea is to attain the semantic regularities of the explicit and implicit aspects using vectors of word embeddings and interpolate that as a front layer in the Bidirectional Long Short-Term Memory Bi-LSTM. First, we

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (5)
Scopus Crossref
Publication Date
Sun Feb 10 2019
Journal Name
Iraqi National Journal Of Nursing Specialties
Self-Evaluation of Nurses and Midwives Practices Using SBAR (Situation, Background, Assessment, Recommendation) Communication Tool on Maternal Health Documentation
...Show More Authors

Abstract:
Objective: To self-evaluate the effect of SBAR (Situation, Background, Assessment, and Recommendation) educational program on nurse and midwives practices in maternal health report documentation accuracy.
Methods: A quasi- experimental design was carried with the application of pre- post test for nurses and midwives’ knowledge and practices regarding SBAR communication tool. The study was held in Al-Elwia maternity teaching hospital, Al –Karckh maternity hospital and Al-Yarmouk teaching Hospital. purposive sample as it was convenient with inclusion criteria consisted of (84) nurse and midwives. The questionnaire comprised of demographic data, nurses- midwives practices of SBAR using (5) level Likert scale for assessme

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Aip Conference Proceedings
Non-linear support vector machine classification models using kernel tricks with applications
...Show More Authors

The support vector machine, also known as SVM, is a type of supervised learning model that can be used for classification or regression depending on the datasets. SVM is used to classify data points by determining the best hyperplane between two or more groups. Working with enormous datasets, on the other hand, might result in a variety of issues, including inefficient accuracy and time-consuming. SVM was updated in this research by applying some non-linear kernel transformations, which are: linear, polynomial, radial basis, and multi-layer kernels. The non-linear SVM classification model was illustrated and summarized in an algorithm using kernel tricks. The proposed method was examined using three simulation datasets with different sample

... Show More
View Publication Preview PDF
Crossref (2)
Scopus Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Microchemical Journal
A flow analysis system integrating an optoelectronic detector for the quantitative determination of active ingredients in pharmaceutical formulations
...Show More Authors

View Publication Preview PDF
Scopus (24)
Crossref (17)
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Microchemical Journal
A flow analysis system integrating an optoelectronic detector for the quantitative determination of active ingredients in pharmaceutical formulations
...Show More Authors

Scopus (24)
Crossref (17)
Scopus Clarivate Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
An improved neurogenetic model for recognition of 3D kinetic data of human extracted from the Vicon Robot system
...Show More Authors

These days, it is crucial to discern between different types of human behavior, and artificial intelligence techniques play a big part in that.  The characteristics of the feedforward artificial neural network (FANN) algorithm and the genetic algorithm have been combined to create an important working mechanism that aids in this field. The proposed system can be used for essential tasks in life, such as analysis, automation, control, recognition, and other tasks. Crossover and mutation are the two primary mechanisms used by the genetic algorithm in the proposed system to replace the back propagation process in ANN. While the feedforward artificial neural network technique is focused on input processing, this should be based on the proce

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sat Oct 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Electronic trading system and its refletion in the trading of stock market indices –an analytical study of the Iraqi market for securities–
...Show More Authors

The research aims at identify the role of the electronic trading system used in the Iraq stock exchange to promote trading activity for the stocks of listed companies in this market.

To prove the hypothesis of research, it was selected the main trading indicators for the market to be a main field in test the research hypothesis.it was selected as the period of time for (9)years span between the years (2005-2013) because they represent the first two articles of equal time periods represent aperiod that preceded the introduction of electronic trading system  while the second represents the period of time that followed 

The research found a number of conclusions but the mo

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Jul 12 2023
Journal Name
Energies
Finite Time Disturbance Observer Based on Air Conditioning System Control Scheme
...Show More Authors

A novel robust finite time disturbance observer (RFTDO) based on an independent output-finite time composite control (FTCC) scheme is proposed for an air conditioning-system temperature and humidity regulation. The variable air volume (VAV) of the system is represented by two first-order mathematical models for the temperature and humidity dynamics. In the temperature loop dynamics, a RFTDO temperature (RFTDO-T) and an FTCC temperature (FTCC-T) are designed to estimate and reject the lumped disturbances of the temperature subsystem. In the humidity loop, a robust output of the FTCC humidity (FTCC-H) and RFTDO humidity (RFTDO-H) are also designed to estimate and reject the lumped disturbances of the humidity subsystem. Based on Lyapunov theo

... Show More
View Publication
Scopus (7)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Wed Jun 30 2021
Journal Name
International Journal Of Intelligent Engineering And Systems
Airborne Computer System Path-Tracking Based Multi-PID-PSO Controller Design
...Show More Authors

View Publication
Scopus (14)
Crossref (7)
Scopus Crossref
Publication Date
Wed Aug 31 2022
Journal Name
International Journal Of Intelligent Engineering And Systems
Performance Evaluation Based on Multi-UAV in Airborne Computer Network System
...Show More Authors

View Publication
Scopus (4)
Crossref (1)
Scopus Crossref