The introduction of Industry 4.0, to improve Internet of Things (IoT) standards, has sparked the creation of 5G, or highly sophisticated wireless networks. There are several barriers standing in the way of 5G green communication systems satisfying the expectations for faster networks, more user capacity, lower resource consumption, and cost‐effectiveness. 5G standards implementation would speed up data transmission and increase the reliability of connected devices for Industry 4.0 applications. The demand for intelligent healthcare systems has increased globally as a result of the introduction of the novel COVID‐19. Designing 5G communication systems presents research problems such as optimizing resource usage, managing mobility, ensuring cost‐efficiency, managing interference, and maximizing spectral efficiency. The fast advancement of artificial intelligence (AI) in several domains yields improved performance in contrast to traditional methods. Hence, including AI in 5G standards would enhance performance by catering to diverse end‐user applications. Initially, we provide an overview of concepts such as Industry 4.0, the 5G standard, and recent developments in the sphere of wireless communications in the future. The goal is to use 5G technology to look at current research problems. We present a new architecture for Industry 4.0 and 5G‐compliant smart healthcare systems. We develop and run the proposed model to investigate the current 5G methods using the Network Simulator (NS2). The results of the simulation show that 5G resource management and interference management approaches already in use face challenges including performance trade‐offs.
This research including, CO3O4 was prepared by the chemical spry pyrolysis, deposited film acceptable to assess film properties and applications as photodetector devise, studying the optical and optoelectronics properties of Cobalt Oxide and effect of different doping ratios with Br (2, 5, 8)%. the optical energy gap for direct transition were evaluated and it decreases as the percentage Br increase, Hall measurements showed that all the films are p-type, the current–voltage characteristic of Br:CO3O4 /Si Heterojunction show change forward current at dark varies with applied voltage, high spectral response, specific detectivity and quantum efficiency of CO3O4 /Si detector with 8% of Br ,was deliberate, extreme value with 673nm.
... Show MoreThe present study aims at investigating classroom verbal and nonverbal communication at the departments of English language . An observation checklist has been constructed , which is distributed into several domains that include a number of items to investigate classroom communication . Face validity and reliability coefficient have been computed. The checklist has been applied on 86 instructors at the Colleges of Education and Arts, Departments of English Language at the Universities of ThiQar, Basrah ,and Maysan . One sample t- test and Two independent sample t-test formulas have been used. Final results reveal that college instructors use verbal communication inside their classrooms and non- verbal communication has not been employed by
... Show Moreلا يزال المهتمون بلعبة كرة السلة يبحثون عن إيجاد الوسائل الأكثر أهمية وصولاً إلى ما تطمح إليه الدول لتحقيق افضل المستويات في نواحي اللعبة كافة من خلال التغلب على المعوقات التي تحول دون تقدمها إلى الأمام بالدراسة والبحث. ومن هذا المنطلق انصب البحث في ضرورة معالجة القصور الناتج عن عدم وجود المعايير ذات العلاقة باختبارات قدرات اللاعبين وعلى وفق مراكز اللعب ولا سيما المهارية الهجومية مما شكل ذلك ضعفاً في أعداد و
... Show MoreThe method of predicting the electricity load of a home using deep learning techniques is called intelligent home load prediction based on deep convolutional neural networks. This method uses convolutional neural networks to analyze data from various sources such as weather, time of day, and other factors to accurately predict the electricity load of a home. The purpose of this method is to help optimize energy usage and reduce energy costs. The article proposes a deep learning-based approach for nonpermanent residential electrical ener-gy load forecasting that employs temporal convolutional networks (TCN) to model historic load collection with timeseries traits and to study notably dynamic patterns of variants amongst attribute par
... Show MoreThe banking industry, as a result of the great challenges it faced, required continuous development of the principles of management, control and mechanisms used. The Basel Committee on Banking Supervision has played a leading role in legalizing many of these developments and has been able to contribute significantly to establishing a common framework for banking supervision, The central role in the various countries of the world is based on coordination between the various regulatory authorities and thinking about finding mechanisms to confront the risks faced by banks, recognizing the importance of the banking sector in the stability of domestic and international banking systems or the danger of this sector in the emergence of F
... Show MoreFuture wireless systems aim to provide higher transmission data rates, improved spectral efficiency and greater capacity. In this paper a spectral efficient two dimensional (2-D) parallel code division multiple access (CDMA) system is proposed for generating and transmitting (2-D CDMA) symbols through 2-D Inter-Symbol Interference (ISI) channel to increase the transmission speed. The 3D-Hadamard matrix is used to generate the 2-D spreading codes required to spread the two-dimensional data for each user row wise and column wise. The quadrature amplitude modulation (QAM) is used as a data mapping technique due to the increased spectral efficiency offered. The new structure simulated using MATLAB and a comparison of performance for ser
... Show MoreIn this paper, a microcontroller-based electronic circuit have been designed and implemented for dental curing system using 8-bit MCS-51 microcontroller. Also a new control card is designed while considering advantages of microcontroller systems the time of curing was controlled automatically by preset values which were input from a push-button switch. An ignition based on PWM technique was used to reduce the high starting current needed for the halogen lamp. This paper and through the test result will show a good performance of the proposed system.