Passive optical network (PON) is a point to multipoint, bidirectional, high rate optical network for data communication. Different standards of PONs are being implemented, first of all PON was ATM PON (APON) which evolved in Broadband PON (BPON). The two major types are Ethernet PON (EPON) and Gigabit passive optical network (GPON). PON with these different standards is called xPON. To have an efficient performance for the last two standards of PON, some important issues will considered. In our work we will integrate a network with different queuing models such M/M/1 and M/M/m model. After analyzing IPACT as a DBA scheme for this integrated network, we modulate cycle time, traffic load, throughput, utilization and overall delay mathematically for single OLT and multiOLT EPON system, and average delay and throughput for single OLT GPON system. A comparison of average delay and throughput between EPON and GPON is introduced with the same number of ONUs. The results show that the proposed multi-OLT EPON system can supports existing bandwidth allocation schemes with better performance than the single-OLT EPON. Cycle delay and average delay is decreased with multi-OLT system than in single OLT system, while throughput of multi-OLT system is higher than throughput of single OLT system. Splitting ratio and throughput in GPON is much higher than in EPON.
Realizing robust interconnectivity in a rapidly changing network topology is a challenging issue. This problem is escalating with the existence of constrained devices in a vehicular environment. Several standards have been developed to support reliable communication between vehicular nodes as the IEEE 1609 WAVE stack. Mitigating the impact of security/mobility protocols on limited capability nodes is a crucial aspect. This paper examines the burden of maintaining authenticity service that associated with each handover process in a vehicular network. Accordingly, a network virtualization-based infrastructure is proposed which tackles the overhead of IEEE 1906 WAVE standard on constrained devices existed in vehicular network. The virtualized
... Show MoreWireless Sensor Networks (WSNs) are promoting the spread of the Internet for devices in all areas of
life, which makes it is a promising technology in the future. In the coming days, as attack technologies become
more improved, security will have an important role in WSN. Currently, quantum computers pose a significant
risk to current encryption technologies that work in tandem with intrusion detection systems because it is
difficult to implement quantum properties on sensors due to the resource limitations. In this paper, quantum
computing is used to develop a future-proof, robust, lightweight and resource-conscious approach to sensor
networks. Great emphasis is placed on the concepts of using the BB8
Computer systems and networks are being used in almost every aspect of our daily life; as a result the security threats to computers and networks have also increased significantly. Traditionally, password-based user authentication is widely used to authenticate legitimate user in the current system0T but0T this method has many loop holes such as password sharing, shoulder surfing, brute force attack, dictionary attack, guessing, phishing and many more. The aim of this paper is to enhance the password authentication method by presenting a keystroke dynamics with back propagation neural network as a transparent layer of user authentication. Keystroke Dynamics is one of the famous and inexpensive behavioral biometric technologies, which identi
... Show MoreToxic substances have been released into water supplies in recent decades because of fast industrialization and population growth. Fenton electrochemical process has been addressed to treat wastewater which is very popular because of its high efficiency and straightforward design. One of the advanced oxidation processes (AOPs) is electro-Fenton (EF) process, and electrode material significantly affects its performance. Nickel foam was chosen as the source of electro-generated hydrogen peroxide (H2O2) due to its good characteristics. In the present study, the main goals were to explore the effects of operation parameters (FeSO4 concentration, current density, and electrolysis time) on the catalytic performance that was optimized by r
... Show MoreThe performa of evaluation process is a process that should be carried out by all industrial management in order to stand on aspects of development or underdevelopment of the various departments and activities in its industrial project for the purpose of identifying obstacles and find out the causes and then avoid them quickly. And intended to rectify the performance evaluation of the activities of industrial project or economic union by measuring the results achieved within a specific operational process and compare it to what is already targeted, and often the time for comparison of one year.
The process of performance evaluation depends upon several criteria and indicators within the
... Show MoreThe study was conducted at the fields of the Department of Horticulture and Landscape Gardening,College of Agriculture, University of Baghdad during the growing seasons of 2013- 2014 .forPerformance of Evaluation Vegetative growth and yield traits and estimate some important geneticparameter on seven selected breed of tomato which (S1-S7 ) Pure line. the results found significantdifferences between breeds in all study trails except clusters flowering number .S1 significantly plantlength which reached 227.3 .Also S1,S2 and S4 were significantly increased the number fruit for plant,Fruit weight Increased in S3 ,S6 and plant yield. Increased in S1, S4 ,S5. Genetic variation valueswere low in Floral clusters , TSS and fruit firmest and medium i
... Show MoreThe ejector refrigeration system is a desirable choice to reduce energy consumption. A Computational Fluid Dynamics CFD simulation using the ANSYS package was performed to investigate the flow inside the ejector and determine the performance of a small-scale steam ejector. The experimental results showed that at the nozzle throat diameter of 2.6 mm and the evaporator temperature of 10oC, increasing boiler temperature from 110oC to 140oC decreases the entrainment ratio by 66.25%. At the boiler temperature of 120oC, increasing the evaporator temperature from 7.5 to 15 oC increases the entrainment ratio by 65.57%. While at the boiler temperature of 120oC and
... Show MoreThis work presents the construction of a test apparatus for air-conditioning application that is flexible in changing a scaled down adsorbent bed modules. To improve the heat and mass transfer performance of the adsorbent bed, a finned-tube of the adsorbent bed heat exchanger was used. The results show that the specific cooling power (SCP) and the coefficient of performance (COP) are 163 W/kg and 0.16, respectively, when the cycle time is 40 min, the hot water temperature is 90oC, the cooling water temperature is 30oC and the evaporative water temperature is 11.4oC.