In the presence of deep submicron noise, providing reliable and energy‐efficient network on‐chip operation is becoming a challenging objective. In this study, the authors propose a hybrid automatic repeat request (HARQ)‐based coding scheme that simultaneously reduces the crosstalk induced bus delay and provides multi‐bit error protection while achieving high‐energy savings. This is achieved by calculating two‐dimensional parities and duplicating all the bits, which provide single error correction and six errors detection. The error correction reduces the performance degradation caused by retransmissions, which when combined with voltage swing reduction, due to its high error detection, high‐energy savings are achieved. The res
... Show More<span lang="EN-US">The need for robotics systems has become an urgent necessity in various fields, especially in video surveillance and live broadcasting systems. The main goal of this work is to design and implement a rover robotic monitoring system based on raspberry pi 4 model B to control this overall system and display a live video by using a webcam (USB camera) as well as using you only look once algorithm-version five (YOLOv5) to detect, recognize and display objects in real-time. This deep learning algorithm is highly accurate and fast and is implemented by Python, OpenCV, PyTorch codes and the Context Object Detection Task (COCO) 2020 dataset. This robot can move in all directions and in different places especially in
... Show MoreHigh frequency (HF) radio wave propagation depends on the ionosphere status which is changed with the time of day, season, and solar activity conditions. In this research, ionosonde observations were used to calculate the values of maximum usable frequency (MUF) the ionospheric F2- layer during strong geomagnetic storms (Dst ≤ -100 nT) which were compared with the predicted MUF for the same layer by using IRI-16 model. Data from years 2015 and 2017, during which five strong geomagnetic storms occurred, were selected from two Japanese ionosonde stations (Kokubunji and Wakkanai) located at the mid-latitude region. The results of the present work do not show a good correlation between the observed and predicted MUF values for F2- laye
... Show MoreWe study in this paper the composition operator that is induced by ?(z) = sz + t. We give a characterization of the adjoint of composiotion operators generated by self-maps of the unit ball of form ?(z) = sz + t for which |s|?1, |t|<1 and |s|+|t|?1. In fact we prove that the adjoint is a product of toeplitz operators and composition operator. Also, we have studied the compactness of C? and give some other partial results.
In this paper, a method for data encryption was proposed using two secret keys, where the first one is a matrix of XOR's and NOT's gates (XN key), whereas the second key is a binary matrix (KEYB) key. XN and KEYB are (m*n) matrices where m is equal to n. Furthermore this paper proposed a strategy to generate secret keys (KEYBs) using the concept of the LFSR method (Linear Feedback Shift Registers) depending on a secret start point (third secret key s-key). The proposed method will be named as X.K.N. (X.K.N) is a type of symmetric encryption and it will deal with the data as a set of blocks in its preprocessing and then encrypt the binary data in a case of stream cipher.
This paper aims to study a mathematical model showing the effects of mass transfer on MHD oscillatory flow for Carreau fluid through an inclined porous channel under the influence of temperature and concentration at a slant angle on the centre of the flow with the effect of gravity. We discussed the effects of several parameters that are effective on fluid movement by analyzing the graphs obtained after we reached the momentum equation solution using the perturbation series method and the MATHEMATICA program to find the numerical results and illustrations. We observed an increased fluid movement by increasing radiation and heat generation while fluid movement decreased by increasing the chemical reaction parameter and Froude number. 
... Show MoreElectrochemical Grinding (ECG) process is a mechanically assisted electrochemical process for material processing. The process is able to successfully machine electrically conducting harder materials at faster rate with improved surface finish and dimensional control. This research studies the effect of applied current, electrolyte concentration, spindle speed and the gap between workpiece and tool on hardness and material removal rate during electrochemical grinding for stainless steel 316. The characteristic features of the electrochemical grinding process are explored through Taguchi-design-based experimental studies. The better hardness can be obtained at 10 A of the current, 150 g/l of the electrolyte concentration, 0.3 mm of gap an
... Show More