Rapid population growth and the development of industries result in an increase in solid waste. Glass, which represents a large proportion of solid waste, can be used in construction applications. The utilization of recycled glass waste in the asphalt mixture is considered an environmentally-friendly application. In this laboratory study, glass bottles were recycled by crushing, grinding, and sieving them into particles that pass through sieve No. 200 to be used as a partial replacement for the filler in the hot mixture asphalt of wearing course Type-A. The ratios (4, 4.3, 4.6, 4.9, 5.2,5.5) were used to determine the optimum asphalt content (OAC), and three ratios (30, 60, and 90) were used for the replacement of limestone powder filler to determine the optimum value of bitumen for glass-containing mixtures (GM). The glass-asphalt mixtures were compared with the control mixture using the Marshall test (stability, flow, voids, density), Moisture resistance was examined using (indirect tensile strength test), also scanning electron microscope photos of the glass-asphalt mixture sample were discussed was found that the glass asphalt achieved improvement in the properties of the asphalt mix as well as reduced the optimum bitumen content and also had a strong economic effect compared to the control mixture.
In this research , Aprocess ( LICVD) was used for producing silicon nitride powders with chemical compositon Si3N4 ,by using TEA-Co2 Laser to induc reaction in the gas phase, NH3 was used as on additive to SiH4. Reactant gases that were vibrationaly heated by absorbing energy emitted from TEA-Co2 Laser decomposes throug coillsion assisted multiple photon dissociation causing Si3N4 powders. By the dependence of the LICVD process on varios parameters such as Laser intensity , total gas pressure, partial pressures of SiH4 and NH3 were investigated. Dissociation rate as a function of Laser intensity and pressure was investigated. The powders obtained exhibit various colors from brown which is rich in Si to white.This
... Show MoreOne of the troublesome duties in chemical industrial units is determining the instantaneous drop size distribution, which is created between two immiscible liquids within such units. In this work a complete system for measuring instantaneous droplet size is constructed. It consists of laser detection system (1mW He-Ne laser), drop generation system (turbine mixer unit), and microphotography system. Two immiscible liquids, water and kerosene were mixed together with different low volume fractions (0.0025, 0.02) of kerosene (as a dispersed phase) in water (as a continuous phase). The experiments were carried out at different rotational speed (1180- 2090 r.p.m) of the turbine mixer. The Sauter mean diameter of the drops was determined by la
... Show MoreHigh-resolution imaging of celestial bodies, especially the sun, is essential for understanding dynamic phenomena and surface details. However, the Earth's atmospheric turbulence distorts the incoming light wavefront, which poses a challenge for accurate solar imaging. Solar granulation, the formation of granules and intergranular lanes on the sun's surface, is important for studying solar activity. This paper investigates the impact of atmospheric turbulence-induced wavefront distortions on solar granule imaging and evaluates, both visually and statistically, the effectiveness of Zonal Adaptive Optics (AO) systems in correcting these distortions. Utilizing cellular automata for granulation modelling and Zonal AO correction methods,
... Show MoreReverse osmosis membrane desalination is one of the most significant water treatments that is used to offer freshwater. The aim of this research is to study the effect of controlling the value of the zeta potential on the suspended particles in the water and the proximity of the membrane surfaces in the colloidal solution, to keep the water stable electrically and disperse the colloidal particles. To achieve this aim, the experimental study was conducted in the Sanitary Engineering Laboratory, in the engineering college - University of Baghdad. Two systems were set up, one worked normally and the other worked by using the zeta rod placed before the reverse osmosis membrane. The results showed that the effect of the zeta rod increas
... Show MoreIn this paper, an enhanced artificial potential field (EAPF) planner is introduced. This planner is proposed to rapidly find online solutions for the mobile robot path planning problems, when the underlying environment contains obstacles with unknown locations and sizes. The classical artificial potential field represents both the repulsive force due to the detected obstacle and the attractive force due to the target. These forces can be considered as the primary directional indicator for the mobile robot. However, the classical artificial potential field has many drawbacks. So, we suggest two secondary forces which are called the midpoint
... Show MoreThe microdrilling and nanodrilling holes are produced by a Q-switched Nd :YAG laser (1064 nm) interaction with 8009 Al alloy using nanoparticles. Two kinds of nanoparticles were used with this alloy. These nanoparticles are tungsten carbide (WC) and silica carbide (SiC). In this work, the microholes and nanoholes have been investigated with different laser pulse energies (600, 700 and 800)mJ, different repetition rates (5Hz and 10Hz) and different concentration of nanoparticles (90%, 50% and 5% ). The results indicate that the microholes and nanoholes have been achieved when the laser pulse energy is 600 mJ, laser repetition rate is 5Hz, and the concentration of the nanoparticles (for the two types of n
... Show MoreThe synchronization of a complex network with optoelectronic feedback has been introduced theoretically, with use of 2×2 oscillators network; each oscillator considered is an optocoupler (LED coupled with photo-detector). Fixing the bias current (δ) and increasing the feedback strength (Ԑ) of each oscillator, the dynamical sequence like chaotic and periodic mixed mode oscillations has been observed. Synchronization of unidirectionally coupled of light emitting diodes network has been featured when coupling strength equal to 1.7×10-4. The transition between non-synchronization and synchronization states by means of the spatio-temporal distribution has been investigated.